Getting More Miles From Plug-in Hybrids
March 2, 2016 | University of California, RiversideEstimated reading time: 3 minutes

Plug-in hybrid electric vehicles (PHEVs) can reduce fuel consumption and greenhouse gas emissions compared to their gas-only counterparts. Researchers at the University of California, Riverside’s Bourns College of Engineeringhave taken the technology one step further, demonstrating how to improve the efficiency of current PHEVs by almost 12 percent.
Researchers at the University of California, Riverside have shown how to improve the efficiency of current PHEVs.
Since plug-in hybrids combine gas or diesel engines with electric motors and large rechargeable batteries, a key component is an energy management system (EMS) that controls when they switch from ‘all-electric’ mode, during which stored energy from their batteries is used, to ‘hybrid’ mode, which utilizes both fuel and electricity. As new EMS devices are developed, an important consideration is combining the power streams from both sources in the most energy-efficient way.
While not all plug-in hybrids work the same way, most start in all-electric mode, running on electricity until their battery pack is depleted and then switching to hybrid mode. Known as binary mode control, this EMS strategy is easy to apply, but isn’t the most efficient way to combine the two power sources. In lab tests, blended discharge strategies, in which power from the battery is used throughout the trip, have proven to be more efficient at minimizing fuel consumption and emissions, but until now they haven’t been a realistic option for real-world applications, said Xuewei Qi, a graduate student in the Bourns College of Engineering’s Center for Environmental Research and Technology (CE-CERT) who led the research. Qi is working with CE-CERT Director Matthew Barth, a professor of electrical and computer engineering.
“Blended discharge strategies have the ability to be extremely energy efficient, but those proposed previously require upfront knowledge about the nature of the trip, road conditions and traffic information, which in reality is almost impossible to provide,” Qi said.
While the UCR EMS does require trip-related information, it also gathers data in real time using onboard sensors and communications devices, rather than demanding it upfront. It is one of the first systems based on a machine learning technique called reinforcement learning (RL), and was published online Feb. 5 in the journal Transportation Research Record.
In comparison-based tests on a 20-mile commute in Southern California, the UCR EMS outperformed currently available binary mode systems, with average fuel savings of 11.9 percent. Even better, Qi said, the system gets smarter the more it’s used and is not model- or driver-specific, meaning it can be applied to any PHEV driven by any individual.
“In our reinforcement learning system, the vehicle learns everything it needs to be energy efficient based on historical data. As more data are gathered and evaluated, the system becomes better at making decisions that will save on energy,” Qi said.
Qi said the next phase of the research will focus on creating a cloud-based network that enables PHEVs to work together for even better results.
“Our current findings have shown how individual vehicles can learn from their historical driving behavior to operate in an energy efficient manner. The next step is to extend the proposed mode to a cloud-based vehicle network where vehicles not only learn from themselves but also each other. This will enable them to operate on even less fuel and will have a huge impact on the amount of greenhouse gases and other pollutants released,” he said.
The work was done by Qi and Barth, together with Guoyuan Wu, assistant research engineer at CE-CERT; Kanok Boriboonsomsin, associate research engineer at CE-CERT; and Jeffrey Gonder, senior engineer at the National Renewable Energy Laboratory in Golden, Colo. The project was partially supported by the U. S. Department of Transportation.
Suggested Items
L3Harris Receives $214 Million in Orders to Support German Armed Forces
05/12/2025 | L3Harris TechnologiesL3Harris Technologies has received multiple orders expected to total $214 million under Germany’s Digitalization – Land Based Operations (D-LBO) program.
Cadence, AVCC to Advance Physical AI Innovations for Autonomous Vehicles
05/12/2025 | Cadence Design SystemsCadence has joined the Autonomous Vehicle Computing Consortium (AVCC), marking a significant step forward in Cadence's commitment to advancing autonomous vehicle technology for the physical AI era by working with industry leaders to define high-performance computing (HPC) and safety solutions for next-generation autonomous vehicle systems.
AI Chips for the Data Center and Cloud Market Will Exceed US$400 Billion by 2030
05/09/2025 | IDTechExBy 2030, the new report "AI Chips for Data Centers and Cloud 2025-2035: Technologies, Market, Forecasts" from market intelligence firm IDTechEx forecasts that the deployment of AI data centers, commercialization of AI, and the increasing performance requirements from large AI models will perpetuate the already soaring market size of AI chips to over US$400 billion.
NXP Unveils Third-Generation Imaging Radar Processors for Level 2+ to 4 Autonomous Driving
05/09/2025 | NXP SemiconductorNXP Semiconductors N.V. unveiled its new S32R47 imaging radar processors in 16 nm FinFET technology, building on NXP’s proven expertise in the imaging radar space.
OSI Systems Receives $36 Million Contract for Aviation Security Systems
05/08/2025 | BUSINESS WIREOSI Systems, Inc. announced that its Security division received a contract award for approximately $36 million to deploy and service airport screening solutions for a prominent international airport in the Middle East.