Nature Photonics: Light Source for Quicker Computer Chips
April 19, 2016 | Karlsruhe Institute of TechnologyEstimated reading time: 2 minutes
Worldwide growing data volumes make conventional electronic processing reach its limits. Future information technology is therefore expected to use light as a medium for quick data transmission also within computer chips. Researchers under the direction of KIT have now demonstrated that carbon nanotubes are suited for use as on-chip light source for tomorrow’s information technology, when nanostructured waveguides are applied to obtain the desired light properties. The scientists have now presented their results in Nature Photonics.
On the large scale, data transmission by light has long become a matter of routine: Glass fiber cables as light waveguides transmit telephone and internet signals, for instance. For using the advantages of light, i.e., speed and energy efficiency, also on the small scale of computer chips, researchers of KIT have made an important step from fundamental research towards application. By the integration of smallest carbon nanotubes into a nanostructured waveguide, they have developed a compact miniaturized switching element that converts electric signals into clearly defined optical signals.
“The nanostructures act like a photonic crystal and allow for customizing the properties of light from the carbon nanotube,” Felix Pyatkov and Valentin Fütterling, the first authors of the study of KIT’s Institute of Nanotechnology, explain. “In this way, we can generate narrow-band light in the desired color on the chip.” Processing of the waveguide precisely defines the wavelength at which the light is transmitted. By engravings using electron beam lithography, the waveguides of several micrometers in length are provided with finest cavities of a few nanometers in size. They determine the waveguide’s optical properties. The resulting photonic crystals reflect the light in certain colors, a phenomenon observed in nature on apparently colorful butterfly wings.
As novel light sources, carbon nanotubes of about 1 micrometer in length and 1 nanometer in diameter are positioned on metal contacts in transverse direction to the waveguide. At KIT, a process was developed, by means of which the nanotubes can be integrated specifically into highly complex structures. The researchers applied the method of dielectrophoresis for deposition of carbon nanotubes from the solution and their arrangement vertically to the waveguide. This way of separating particles using inhomogeneous electric fields was originally used in biology and is highly suited to deposit nanoscaled objects on carrier materials. The carbon nanotubes integrated into the waveguide act as a small light source. When electric voltage is applied, they produce photons.
The compact electricity/light signal converter presented now meets the requirements of the next generation of computers that combine electronic components with nanophotonic waveguides. The signal converter bundles the light about as strongly as a laser and responds to variable signals with high speed. Already now, the optoelectronic components developed by the researchers can be used to produce light signals in the gigahertz frequency range from electric signals.
Among the leading researchers involved in the project were Ralph Krupke, who conducts research at the KIT Institute of Nanotechnology and at the Institute of Materials Science of TU Darmstadt, Wolfram H.P. Pernice, who moved from the KIT to the University of Münster one year ago, and Manfred M. Kappes, Institute of Physical Chemistry and Institute of Nanotechnology of KIT. The project was funded by the Science and Technology of Nanosystems (STN) programme of the Helmholtz Association. It is aimed at studying nanosystems of unique functionality and the potential of materials of a few nanometers in structural size. The Volkswagen Foundation financed a Ph.D. student position for the research project. In addition, the project was supported by the Karlsruhe Nano Micro Facility (KNMF) platform.
Suggested Items
Digital Threads Built on AI in a New Research Project
11/27/2023 | Linköping UniversityLinköping university has been granted six million SEK from the Swedish Innovation Agency (Vinnova) for the research project Catena-D (Circular and resource-efficient value chain systemically enabled with AI and digital thread).
Essity Joins European Research Project on Circular Sensor Technology
11/27/2023 | PRNewswireThe hygiene and health company Essity has joined the European research project Sustronics, which is supporting the development of circular electronic products. Companies and universities from 11 countries will, together with Essity, develop sensor-based digital solutions for self and professional care.
SEL Receives 2023 Top Project of the Year Award for PCB Factory
11/22/2023 | Schweitzer Engineering LaboratoriesSchweitzer Engineering Laboratories (SEL), a global leader in products and solutions that protect and control electric power systems, earned the 2023 Top Project of the Year award by the Idaho Business Review last week at Idaho’s 2023 Top Projects award ceremony in Boise.
Eltek Receives Five Purchase Orders Totaling $3.8 Million
11/20/2023 | EltekEltek Ltd., a global manufacturer and supplier of technologically advanced solutions in the field of printed circuit boards, announced that it has received five purchase orders in a total amount of $3.8 million.
NextFlex Announces $6.5M Funding for Flexible Hybrid Electronics Innovations in Extreme Environments and Sustainability
11/15/2023 | BUSINESS WIRENextFlex, America’s Flexible Hybrid Electronics (FHE) Manufacturing Innovation Institute, announced $6.49M in funding (including $3.29M in cost-share contribution from participants) for seven new projects as part of its Project Call 8.0 to further promote FHE development and adoption throughout the U.S. advanced manufacturing sector.