Discovery Could Energize Development of Longer-Lasting Batteries
May 25, 2016 | UT DallasEstimated reading time: 2 minutes
A UT Dallas researcher has made a discovery that could open the door to cellphone and car batteries that last five times longer than current ones.
Dr. Kyeongjae Cho, professor of materials science and engineering in the Erik Jonsson School of Engineering and Computer Science, has discovered new catalyst materials for lithium-air batteries that jumpstart efforts at expanding battery capacity. The research was published in Nature Energy.
“There’s huge promise in lithium-air batteries. However, despite the aggressive research being done by groups all over the world, those promises are not being delivered in real life,” Cho said. “So this is very exciting progress. (UT Dallas graduate student) Yongping Zheng and our collaboration team have demonstrated that this problem can be solved. Hopefully, this discovery will revitalize research in this area and create momentum for further development.”
Lithium-air (or lithium-oxygen) batteries "breathe" oxygen from the air to power the chemical reactions that release electricity, rather than storing an oxidizer internally like lithium-ion batteries do. Because of this, lithium-air batteries boast an energy density comparable to gasoline — with theoretical energy densities as much as 10 times that of current lithium-ion batteries, giving them tremendous potential for storage of renewable energy, particularly in applications such as mobile devices and electric cars.
For example, at one-fifth the cost and weight of those presently on the market, a lithium-air battery would allow an electric car to drive 400 miles on a single charge and a mobile phone to last a week without recharging.
Practical attempts to increase lithium-air battery capacity so far have not yielded great results, Cho said, despite efforts from major corporations and universities. Until now, these attempts have resulted in low efficiency and poor rate performance, instability and unwanted chemical reactions.
Cho and Zheng have introduced new research that focuses on the electrolyte catalysts inside the battery, which, when combined with oxygen, create chemical reactions that create battery capacity. They said soluble-type catalysts possess significant advantages over conventional solid catalysts, generally exhibiting much higher efficiency. In particular, they found that only certain organic materials can be utilized as a soluble catalyst.
Based on that background, Cho and Zheng have collaborated with researchers at Seoul National University to create a new catalyst for the lithium-air battery called dimethylphenazine, which possesses higher stability and increased voltage efficiency.
“The catalyst should enable the lithium-air battery to become a more practical energy storage solution,” Zheng said.
According to Cho, his catalyst research should open the door to additional advances in technology. But he said it could take five to 10 years before the research translates into new batteries that can be used in consumer devices and electric vehicles.
Cho said he has been providing research updates to car manufacturers and telecommunications companies, and said there has been interest in his studies.
“Automobile and mobile device batteries are facing serious challenges because they need higher capacity,” he said.
“This is a major step,” Cho said. “Hopefully it will revitalize the interest in lithium-air battery research, creating momentum that can make this practical, rather than just an academic research study.”
Co-authors on the study included researchers led by Dr. Kisuk Kang at Seoul National University. The research was funded by Hyundai Motor Company and National Research Foundation of Korea.
Suggested Items
Breaking Barriers in Data Communication: ULVAC & SAL Join Forces
12/09/2024 | JCN NewswireULVAC, Inc. and Silicon Austria Labs GmbH join forces to collaborate on the development of plasma etching processes for high-volume manufacturing of thin-film lithium niobate (TFLN).
Foxconn Showcases Satellite Technology and Industry Ecosystem at TASTI 2024
12/03/2024 | FoxconnHon Hai Technology Group (Foxconn) participated in the 2024 Taiwan Space International Annual Conference (TASTI 2024) being held November 30 - December 4, 2024, showcasing its latest advancements in low-orbit satellite communications and its commitment to building a robust satellite industry ecosystem.
QinetiQ US Awarded $42M Task Order to Support U.S. Army Advanced Sensor Processing and Imaging Technologies
12/02/2024 | QinetiQQinetiQ US has been awarded a four-year, $42 million task order to support the U.S. Army Combat Capabilities Development Command (DEVCOM) C5ISR Center's Research & Technology Integration (RTI) Directorate.
Hon Hai Research Institute, Yangming Jiaotong University Jointly Won the Future Technology Award
11/26/2024 | Hon Hai Technology GroupHon Hai Research Institute (HHRI), a subsidiary of Hon Hai Technology Group, the world’s largest technology manufacturing and service provider, joins hands with National Yang -Ming Chiao Tung University ( NYCU ) to break through space Computing Extreme stood out at the " 2024 Taiwan Innovation Technology Expo" and won the "Future Technology Award" for its innovative technology of "application of all-gallium arsenide super interface holography in structured light and stereoscopic vision".
SIA Applauds CHIPS Award for Semiconductor Research Corporation’s SMART USA Institute
11/21/2024 | SIAThe Semiconductor Industry Association (SIA) released the following statement from SIA President and CEO John Neuffer commending the announcement that the U.S. Department of Commerce and the Semiconductor Research Corporation Manufacturing Consortium Corporation (SRC) are entering negotiations for the Commerce Department to provide SRC $285 million to establish and operate the CHIPS Manufacturing USA Institute for Digital Twins.