Fast, Stretchy Circuits Could Yield New Wave of Wearable Electronics
May 30, 2016 | University of Wisconsin-MadisonEstimated reading time: 2 minutes
The consumer marketplace is flooded with a lively assortment of smart wearable electronics that do everything from monitor vital signs, fitness or sun exposure to play music, charge other electronics or even purify the air around you — all wirelessly.
Now, a team of University of Wisconsin—Madison engineers has created the world’s fastest stretchable, wearable integrated circuits, an advance that could drive the Internet of Things and a much more connected, high-speed wireless world.
The advance is a platform for manufacturers seeking to expand the capabilities and applications of wearable electronics — including those with biomedical applications — particularly as they strive to develop devices that take advantage of a new generation of wireless broadband technologies referred to as 5G.With wavelength sizes between a millimeter and a meter, microwave radio frequencies are electromagnetic waves that use frequencies in the .3 gigahertz to 300 gigahertz range. That falls directly in the 5G range.
In mobile communications, the wide microwave radio frequencies of 5G networks will accommodate a growing number of cellphone users and notable increases in data speeds and coverage areas.
In an intensive care unit, epidermal electronic systems (electronics that adhere to the skin like temporary tattoos) could allow health care staff to monitor patients remotely and wirelessly, increasing patient comfort by decreasing the customary tangle of cables and wires.
What makes the new, stretchable integrated circuits so powerful is their unique structure, inspired by twisted-pair telephone cables. They contain, essentially, two ultra-tiny intertwining power transmission lines in repeating S-curves.
This serpentine shape — formed in two layers with segmented metal blocks, like a 3-D puzzle — gives the transmission lines the ability to stretch without affecting their performance. It also helps shield the lines from outside interference and, at the same time, confine the electromagnetic waves flowing through them, almost completely eliminating current loss. Currently, the researchers’ stretchable integrated circuits can operate at radio frequency levels up to 40 gigahertz.
And, unlike other stretchable transmission lines, whose widths can approach 640 micrometers (or .64 millimeters), the researchers’ new stretchable integrated circuits are just 25 micrometers (or .025 millimeters) thick. That’s tiny enough to be highly effective in epidermal electronic systems, among many other applications.
Ma’s group has been developing what are known as transistor active devices for the past decade. This latest advance marries the researchers’ expertise in both high-frequency and flexible electronics.
“We’ve found a way to integrate high-frequency active transistors into a useful circuit that can be wireless,” says Ma, whose work was supported by the Air Force Office of Scientific Research. “This is a platform. This opens the door to lots of new capabilities.”
Other authors on the paper include Yei Hwan Jung, Juhwan Lee, Namki Cho, Sang June Cho, Huilong Zhang, Subin Lee, Tong June Kim and Shaoqin Gong of UW–Madison and Yijie Qiu of the University of Electronic Science and Technology of China.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
10/11/2024 | Andy Shaughnessy, Design007 MagazineThis week’s roundup is a duke’s mixture of news items and interviews with industry experts from design, fabrication and assembly. There’s a lot going on in electronics now. We’ll be bringing you full coverage of SMTA International the week of Oct. 20-24, so stay tuned.
Molg Raises $5.5M in Seed Funding to Tackle Electronics Waste Through Circular Manufacturing
10/11/2024 | PRNewswireMolg Inc. announces the closing of $5.5 million in seed funding to scale the company's circular manufacturing processes for electronics and electrical components. Closed Loop Partners' Ventures Group led the round, with participation from Amazon Climate Pledge Fund,
OE-A Business Climate Survey: 2024 Slowdown, 2025 Set to Shine
10/10/2024 | OE-AThe survey predicts revenue growth of +7 percent for 2024, a significant decrease from the previous survey (March 2024: 13 percent). However, optimism remains high for 2025, with a forecast growth of 19 percent.
SMTA Releases New Online Training Course on Design of Experiments
10/10/2024 | SMTAThe SMTA announced that a new 101-level online training course, “DOE 101: Design of Experiments,” is now available in the training section of the SMTA website.
Kensington Electronics Announces New Partnership with ENNOVI
10/09/2024 | Kensington ElectronicsIn the ever-evolving world of technology, partnerships play a crucial role in driving innovation and growth. Kensington Electronics, Inc. has recently announced an exciting new partnership with ENNOVI, a leading provider of cutting-edge solutions in the electronics industry.