-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
CES 2017: Disruptive Technologies
January 16, 2017 | Dan Feinberg, Technology Editor, I-Connect007Estimated reading time: 16 minutes

Those of you that have read my previous columns covering CES 2017 know that at recent CES shows I have seen many drones, autonomous cars, IoT devices, robots, and many other items ranging from robots who stand in for your doctor to smart trash cans who tell you via Alexa, Google, or soon, Cortana on your own computer, that since you have thrown away two empty milk cartons in the last few days it may be time to order more milk; just say yes and consider it ordered. (It will also tell you it is time to take out the trash.) The IoT is certainly disrupting life as we know it and much of the connected world does provide good value.
Of course, at CES, as always, there were very many phone cases, chargers and even disinfecting devices for your smart phone, lots of new TVs and some truly new advanced personal computer technology.
But what about truly disruptive technologies, technology that will radically change the way things are made and used and the way we live? In this column, I will discuss three of the most disruptive areas of tech—technology that will radically change the way we design and make electronic (and other) devices, the way we commute and the way we are entertained as well as the way we travel. Over the next five to ten years these areas will undergo radical and disruptive change and that change will be happening rapidly.
In addition, I will be speaking on the disruptive technologies that most affect the PCB and EMS industries at the upcoming IPC Executive Forum and IPC APEX EXPO on Monday, February 13, in San Diego.
Think about the radical change in the late ‘40s and early ‘50s from AM radio to TV; think about when in 1886 the first gasoline powered auto-mobile, the Benz Patent-Motor wagon was invented by Karl Benz and what that did to the way human beings travel (also what it did to the buggy whip industry, talk about disruptive). For those of us who have spent a lifetime in the electronics industry, think about the disruption the invention of the semiconductor caused. In a few short years, we went from hard wiring point by point, connecting tube sockets to transformers and discrete resistors and capacitors to each other, etc. to plated through-hole printed circuits soldered on a conveyer. Those disruptions were in fact minor and slow to happen compared to what is now happening. So, as the topic of this column being disruptive technologies we will primarily discuss three of the most visible at CES. These are 3D printing, virtual/mixed reality, and autonomous driving. These three encompass so much more, for example, one might say what about robotics? Well, robotics uses many of the key elements of the three, as do other up and coming devices. In addition, would you not consider an autonomous vehicle, a driverless car a type of robot?
3D printing—Not your Grandfather’s Way of Making PCBs
With shorter life cycles, sending prototypes out to be made takes time and the risk of the copying of confidential designs, especially when offshoring prototype production, is very high. If there must be changes then the cycle times are further extended while waiting for the next prototype to arrive. With 3D printing a prototype can be made right in the office, right away. Even a company that does not have any traditional PCB fabrication can now do it. 3D printing as a concept as well as a demonstrated possibility is not new but the advances in this technology as well as in the design of both the printers themselves as well as the materials (ink, so to speak) have, over the last few years, equaled, and I might add surpassed the rate of Moore’s Law.
There are now 3D printers specifically designed for fast production of PCB prototypes. Let me quote Neil Sharp from an article he wrote last summer: “I don’t think it will be long before their customers start viewing these as "standard" pieces of equipment alongside the pick and place machines. As 3D printing technology continues to evolve, so too will its application within electronics manufacturing.” This is in fact happening, but at an even faster pace. Also, let me quote my good friend Joe Fjelstad, from an article he wrote a few years back: “3D printing allows the manufacturer to make mistakes at a prodigious rate enabling much faster cycles of learning (and redesign) then have ever been available…”
At CES I saw several 3D printing devices and samples of boards that they have produced. This is significant as only a few years ago, there were none and last year there were just a few. Many of the 3D printed circuits they were showing however looked more like copper pictures of a circuit on a substrate. I am sure that some of these companies will survive and in fact thrive. The sheer number of new 3D print offerings will accelerate the usefulness and acceptance of this technology.
One company, Nano Dimension, who just a few years ago, was showing an advanced prototype, this year exhibited a commercially available unit, the Dragonfly 2020 3D printer . To me, calling it a printer does not do it justice, it is in fact a tabletop PCB prototype shop developed, designed and manufactured by an Israeli company, NAN-ODIMENSIO-N (Nano Dimension). (At this point I must disclose that I was enthused by their progress last year and when their stock went public I bought in, so I do have a modest vested interest.)
While there were an increasing number of 3D printers being shown many of them looked like prototypes not quite ready for prime time, the Nano Dragonfly was very impressive. Using their latest high conductivity and dielectric inks they are producing boards that look ready for the commercial market. At the show, I was informed that there are already six of these new devices sold and in production at their customers’ facilities and based on the interest being shown at CES I would expect that soon there will be quite a few more.
Nano Dimension has successfully 3D-printed a series of multi-layered rigid PCBs, connected through printed flexible conductive connections. This important breakthrough addresses traditional production limitations in the electronics industry, such as continuous transfer of conductors between circuits, loose contacts, the size of connections between the
circuits as well as fabrication of multi-layered flexible material. It also means PCBs can be bent so they can be combined with curved and complex geometrical products or cases.
There were many other 3D printing applications in evidence at CES, most focused on making prototypes of “things” such as plastic gears, prototypes of various parts, handles, cases, prosthetic devices, custom fixtures, small custom tools, pieces of art and custom jewelry and even medical implants.
There is no doubt that 3D printing will disrupt far more than the PCB fab industry. Some of the more impressive units available include Formlabs’ new form 2 desktop 3D printer, units from MakerBot, Airwolf HydroFill, Robo 3D , and so many more that I did not have a chance to visit. All of these companies are moving toward more compact units with affordable price points. There are also now companies that can rapidly produce your 3D printed prototypes for you, 3D printing services that can produce many things rapidly.
At CES 2014 I recall a very few 3D printers being shown making very simple small items. This year I estimate there were over 60 companies showing their capability to make so many more, larger and far more complex items and doing so with far more professional looking and less expensive printers. Amazing progress with no limit as to what can be accomplished in sight.
It is disruptive, for sure, to the prototype traditional PCB shops. Just as photoresist was disruptive to the screening segment. I would strongly suggest that any forward-looking PCB manufacturer install a 3D printing machine and take early advantage of this promising technology.
Page 1 of 3
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.