-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSoldering Technologies
Soldering is the heartbeat of assembly, and new developments are taking place to match the rest of the innovation in electronics. There are tried-and-true technologies for soldering. But new challenges in packaging, materials, and sustainability may be putting this key step in flux.
The Rise of Data
Analytics is a given in this industry, but the threshold is changing. If you think you're too small to invest in analytics, you may need to reconsider. So how do you do analytics better? What are the new tools, and how do you get started?
Counterfeit Concerns
The distribution of counterfeit parts has become much more sophisticated in the past decade, and there's no reason to believe that trend is going to be stopping any time soon. What might crop up in the near future?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Modeling an SMT Line to Improve Throughput
June 6, 2018 | Gregory Vance, Rockwell Automation Inc., and Todd Vick, Universal Instruments Corp.Estimated reading time: 5 minutes
One of the major challenges for an electronics assembly manufacturing engineer is determining how an SMT machine will impact throughput. Typically, an SMT equipment supplier will ask for a few (5-10) products to simulate the throughput capability of their machine. Unfortunately, if the engineer works in a high-mix, low-volume environment, he may need to know the impact of a new machine on 1,000 or more products. Currently, there are no simulation tools to effectively model this. This is confirmed in the 2015 IPC International Technology Roadmap for Electronics Interconnections, which states, "In order to better deal with the demands for increased interconnection density and respond to market demands for better return on capital investment in assembly equipment, there is a need within the manufacturing industry for continued improvement in tools and software for modeling and simulation. Needs in this area include better methods of load balancing and improved machine utilization. The tools for determining the balance on assembly lines will need to be flexible to handle the mix of assembly types that manufacturers now face."
Rockwell Automation partnered with Universal Instruments to develop a tool to model a large quantity of products and the impact of varying SMT line configurations. The information used for the modeling includes placements per panel and components placed per hour. With these tools, an electronics assembly plant can be analyzed to identify improvement opportunities and perform "what if" analysis to model impact of machine changes.
Goals for the SMT Line Model
1. Determine the right machine for the product mix.
2. Determine if products are running as fast as they should.
3. Determine if electronics assembly products are built on the optimal line configuration. This is crucial in plants with multiple line configurations.
Development of the SMT Machine Model
1. Discovery that machine cycle times were poor
After sample product simulations were run by Universal Instruments, it was discovered that observed cycle times were two to three times longer than simulated cycle times. This led to a focused effort to understand why. A kaizen event was held to map out the process and observe product builds. Several items that impacted the product cycle time were uncovered. These items were:
1. Component library placement speed slowed down.
2. Imbalance between placement beams/heads due to not having enough nozzles to pick and place the required component packages for the products.
3. Bypassed nozzles and spindles.
4. Large quantity of placements from a single component input.
5. Panel transfer rate into and out of the machine slowed down.
6. Poor optimization and component split between machines on an SMT line.
7. Operator variation in responding to the process.
The most significant item impacting cycle time was not having the necessary quantity of nozzles available for the mix of component packages for the products that the machine/line was building. To maximize flexibility to move products between lines, machines of the same type were equipped with a standard nozzle configuration. The nozzle configurations were changed only when a new component package was needed. To address this problem, a regular nozzle review was implemented to ensure the machines have sufficient nozzles available to optimize the machine programs.
Products were reviewed for the above issues. As items were addressed, the observed cycle times were reduced to align with the simulated cycle times.
2. Realization that cycle time does not represent SMT machine utilization
Cycle time represents how a product is running compared to a benchmark but does not reflect utilization of a machine based upon its throughput capability. For pick and place machines, throughput can be measured in components placed per hour (CPH).
Table 1. Sample of range of placements per panel to run IPC and manufacturer tests.
Manufacturers provide CPH specifications for SMT machines in two ways. The first method is what is often called "Maximum CPH", which represents the maximum speed the manufacturer was able to achieve and the second is based on "IPC 9850", which has CPH categorized by package type. The “placements per panel” required to run these tests are shown in Table 1.
The "IPC 9850" performance tests are useful to compare equipment models and manufacturers to each other, but they do not necessarily represent the products manufacturers are building. This complexity can be understood by comparing Table 1 to the sample product complexity of global product mix in Table 2.
Page 1 of 2
Suggested Items
Are Our Stackup Rules No Longer Valid?
12/19/2024 | Cherie Litson, EPTAC MIT CID/CID+Are the stackup rules we used to follow no longer valid? It depends on what you’re designing. Electrical rules change depending on your circuit. Fabrication rules change depending on which fabricator you’re working with. Today, we just have more options, and sometimes, cost is a bigger rule than anything else. If you search online for information about layer stackups, trace widths, and hole sizes in PCBs, you’ll find a variety of resources.
IPC/WHMA Launches Groundbreaking Online Course on Wire Harness Design
12/18/2024 | IPCIPC/WHMA is excited to announce the launch of its new online instructor-led training course, "Introduction to Wire Harness Design I," available now through the IPC EDGE Learning Management System.
IPC Releases Latest List of Standards and Revisions
12/17/2024 | IPC Community Editorial TeamEach quarter, IPC releases a list of standards that are new or have been updated. To view a complete list of newly published standards and standards revisions, translations, proposed standards for ballot, final drafts for industry review, working drafts, and project approvals, visit ipc.org/status. These are the latest releases for Q4 2024.
IPC, FED Partner for New Design Conference in Vienna
12/12/2024 | Andy Shaughnessy, Design007 MagazineIPC and its German partner FED have teamed up to create a new PCB design conference in Vienna, Austria. The Pan-European Electronics Design Conference (PEDC) is scheduled for Jan. 29-30 at the NH Danube City hotel in Vienna. IPC’s Peter Tranitz, one of the show organizers, discussed how this new show came about, pointing out that, unlike many of the regional conferences in Europe, PEDC will host curated, peer-reviewed presentations, not promotional content or product pitches. Will PEDC become an annual event?
Happy’s Tech Talk #35: Yields March to Design Rules
12/12/2024 | Happy Holden -- Column: Happy’s Tech TalkUltra high density interconnect (UHDI) has many forms, structures, and alternatives, so capturing all the variations and reducing them to design rules has required some departures from traditional IPC design standards. In this column, I’ll be discussing the IPC UHDI design guidelines and standards. The fundamental question is: “Do you need HDI or microvias?”