-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
PCBs Are Moisture-Sensitive Devices
September 7, 2018 | Richard Heimsch, SUPER DRYEstimated reading time: 3 minutes

Guidelines for the proper storage, handling and moisture protection of electronic components can be found in the standards IPC/JEDEC J-STD-033C. Though these date back to 1999, there were no published standards for storage and moisture protection for printed boards until 2010, and their proper handling is still often overlooked. But with the correct storage control and the use of suitable drying methods, considerable manufacturing advantages can be gained: PCBs will remain solderable for much longer and damage during reflow due to moisture can be eliminated.
Historically, the printed board industry relied on military specifications and guidelines to define the packaging methods used to preserve the quality and reliability of PCBs during shipment and storage. Over time, of course, many of these documents became obsolete, were found to be incomplete, didn’t address leadfree assembly, or did not provide guidance for newer laminates or final finishes. Additionally, the proliferation of alternative final finishes has produced concerns and requirements for printed board packaging and handling to preserve the finish and assure good solderability.
For instance, IPC-1601A (2016 revision) Printed Board Handling and Storage Guidelines, states: “Baking is not recommended for OSP coatings, as it deteriorates the OSP finish. If baking is deemed necessary, the use of the lowest possible temperature and dwell time is suggested as a starting point.”
Organic solderability preservative (OSP) coatings are among the leading surface finish options in lead-free soldering because they provide an attractive combination of solderability, ease of processing and low cost. Compared to alternatives, however, they tend to be the most prone to oxidation. The cause for this lies in the pure copper surface protected only by the OSP coating layer. Under normal climatic conditions in a manufacturing process, after only a few minutes there will be a separation of a water film at the surface (3-5 atom layers). This then starts a diffusion process which leads to a vapor pressure balance through the OSP coat. Baking also accelerates solid diffusion between metals and increases intermetallic growth. This can lead to a “weak knee” or other solderability issues if the intermetallic layer reaches the surface and oxidizes. Effects upon other finishes (immersion tin, immersion silver, ENIG) are further detailed in the guidelines.
IPC-1601A (2016 revision) also states: “If process controls are ineffective, and printed boards have absorbed excessive moisture, baking is the most practical remedy.” It goes on to state, “However, baking not only increases cost and cycle time, it can also degrade solderability of the printed board which requires extra handling and increases the likelihood of handling damage or contamination. In general, both the printed board fabricator and the user should strive to avoid baking by practicing effective handling, packaging, storage, and process controls…”
In addition to moisture management at key steps in the fabrication process, IPC-1601A also makes clear that boards should be protectively packaged to limit their exposure to ambient humidity during processing and storage. And, importantly, packaged only after determining that their moisture content is below the maximum acceptable moisture content (MAMC) level, which is typically between 0.1% and 0.5% moisture weight to resin weight. Just as with components, 125°C baking temperatures degrade the solderability of PCBs. IPC-1601A warns that as little as 4-6 hours at that temperature can render HASL finished boards unsolderable. Over the decades that passed since the J-STD-033 standard was created, new technologies were developed and proven to safely reset component floor life using low temperatures and ultra-low humidity without requiring extensive time. These 4060°C and <1% methods were first adopted in Europe, and their recognition and use has now spread to North America.
To read the full version of this article which originally appeared in the August 2018 issue of PCB007 Magazine, click here.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.