-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
PCBs Are Moisture-Sensitive Devices
September 7, 2018 | Richard Heimsch, SUPER DRYEstimated reading time: 3 minutes

Guidelines for the proper storage, handling and moisture protection of electronic components can be found in the standards IPC/JEDEC J-STD-033C. Though these date back to 1999, there were no published standards for storage and moisture protection for printed boards until 2010, and their proper handling is still often overlooked. But with the correct storage control and the use of suitable drying methods, considerable manufacturing advantages can be gained: PCBs will remain solderable for much longer and damage during reflow due to moisture can be eliminated.
Historically, the printed board industry relied on military specifications and guidelines to define the packaging methods used to preserve the quality and reliability of PCBs during shipment and storage. Over time, of course, many of these documents became obsolete, were found to be incomplete, didn’t address leadfree assembly, or did not provide guidance for newer laminates or final finishes. Additionally, the proliferation of alternative final finishes has produced concerns and requirements for printed board packaging and handling to preserve the finish and assure good solderability.
For instance, IPC-1601A (2016 revision) Printed Board Handling and Storage Guidelines, states: “Baking is not recommended for OSP coatings, as it deteriorates the OSP finish. If baking is deemed necessary, the use of the lowest possible temperature and dwell time is suggested as a starting point.”
Organic solderability preservative (OSP) coatings are among the leading surface finish options in lead-free soldering because they provide an attractive combination of solderability, ease of processing and low cost. Compared to alternatives, however, they tend to be the most prone to oxidation. The cause for this lies in the pure copper surface protected only by the OSP coating layer. Under normal climatic conditions in a manufacturing process, after only a few minutes there will be a separation of a water film at the surface (3-5 atom layers). This then starts a diffusion process which leads to a vapor pressure balance through the OSP coat. Baking also accelerates solid diffusion between metals and increases intermetallic growth. This can lead to a “weak knee” or other solderability issues if the intermetallic layer reaches the surface and oxidizes. Effects upon other finishes (immersion tin, immersion silver, ENIG) are further detailed in the guidelines.
IPC-1601A (2016 revision) also states: “If process controls are ineffective, and printed boards have absorbed excessive moisture, baking is the most practical remedy.” It goes on to state, “However, baking not only increases cost and cycle time, it can also degrade solderability of the printed board which requires extra handling and increases the likelihood of handling damage or contamination. In general, both the printed board fabricator and the user should strive to avoid baking by practicing effective handling, packaging, storage, and process controls…”
In addition to moisture management at key steps in the fabrication process, IPC-1601A also makes clear that boards should be protectively packaged to limit their exposure to ambient humidity during processing and storage. And, importantly, packaged only after determining that their moisture content is below the maximum acceptable moisture content (MAMC) level, which is typically between 0.1% and 0.5% moisture weight to resin weight. Just as with components, 125°C baking temperatures degrade the solderability of PCBs. IPC-1601A warns that as little as 4-6 hours at that temperature can render HASL finished boards unsolderable. Over the decades that passed since the J-STD-033 standard was created, new technologies were developed and proven to safely reset component floor life using low temperatures and ultra-low humidity without requiring extensive time. These 4060°C and <1% methods were first adopted in Europe, and their recognition and use has now spread to North America.
To read the full version of this article which originally appeared in the August 2018 issue of PCB007 Magazine, click here.
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.