-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Insertion Loss Performance Differences Due to Plated Finish and Circuit Structure
October 2, 2019 | John Coonrod, Rogers CorporationEstimated reading time: 1 minute

Abstract
Many different final plated finishes are used in the PCB industry, each with its own influence on insertion loss. The impact of an applied finish on insertion loss generally depends on frequency, circuit thickness, and design configuration. This article will evaluate the effects of final plated finishes on the insertion loss of two popular high-frequency circuit design configurations: microstrip transmission-line circuits and grounded coplanar-waveguide (GCPW) transmission-line circuits.
Data will be presented for loss versus frequency for six different plated finishes commonly used in the PCB industry, and opinions will be offered as to why the loss behavior differs for the different plated finishes and for the different circuit configurations. Because the insertion loss of high-frequency circuits also depends on substrate thickness, circuits fabricated on substrates with different thicknesses will be evaluated to analyze the effects of substrate thickness on insertion loss using different plated thicknesses.
This article will also explore many different aspects of the final plated finishes on PCB performance. The nickel thickness in electroless nickel immersion gold (ENIG) finishes normally has some variations; data will show the effects of these variations on the RF performance of a PCB. Immersion tin is often used to minimize thickness variations and analysis will show the effects on RF performance for different thicknesses of immersion tin. The effects of plated finish on PCB performance can vary widely over frequency, and those effects will be shown for a wide range of frequencies from 1 to 100 GHz.
Insertion Loss Overview
The insertion loss of a high-frequency PCB circuit can decrease the usable signal levels of a system, whether in a receiver or a transmitter. Details on insertion loss can be found in a previous IPC paper, although a simple review of insertion loss might be helpful before examining the data on PCB final plated finishes. The total insertion loss is comprised of four loss components.
To read the rest of this article, which appeared in the September 2019 issue of Design007 Magazine, click here.
Suggested Items
Nick Koop Launches IPC Flex Design Class
05/06/2025 | Andy Shaughnessy, Design007 MagazineNick Koop is director of flex technology for TTM Technologies, and he’s been a staple of IPC’s flex committees for decades. He’s also a longtime flex design instructor, and he’s about to debut a new IPC class, Flex and Rigid-Flex Design for Manufacturability, which will run May 12–21. In this interview, Nick tells us about this new class and what attendees can expect to learn.
The Government Circuit: Trump’s Trade War Disrupts the Electronics Ecosystem
05/06/2025 | Chris Mitchell -- Column: The Government CircuitThere is certainly no shortage of work to be done in the IPC Government Relations department, as the U.S. waged a tariff campaign on practically every industrial country in the world and several countries embarked on high-tech initiatives with a mix of approaches to the crucial foundations of electronics manufacturing. Indeed, the breadth and speed of U.S. President Donald Trump’s tariff campaign continues to be a serious challenge for our industry.
Meet Thiago Guimaraes, IPC's New Director of Industry Intelligence
05/05/2025 | Chris Mitchell, IPC VP, Global Government RelationsThe fast pace of innovation in the electronics manufacturing industry means business owners must continuously adapt their processes and capabilities to meet changing customer demands and market trends. To that end, IPC has hired Thiago Guimaraes as the new director of Industry Intelligence. In this interview, Thiago shares key goals and objectives that could revolutionize the industry as he helps stakeholders navigate industry trends and challenges.
Nolan's Notes: The Next Killer App in Component Manufacturing
05/02/2025 | Nolan Johnson -- Column: Nolan's NotesFor quite a while, I’ve been wondering what the next “killer app” will be in electronics manufacturing and why it has been so long since the last disruptive change in EMS. I believe the answer lies in artificial intelligence, which has exploded as the next disruptor.
IPC Excellence in Education Award: Zenaida Valianu
05/01/2025 | Nolan Johnson, I-Connect007Zenaida Valianu is the training manager at IPC who brings more than 25 years of expertise in standards and training development to her role. She has revolutionized IPC certification training programs by significantly enhancing their content with comprehensive curricula and engaging materials. She has also been instrumental in developing essential workforce training courses and contributing to various other initiatives.