6 Things to Know About NASA’s Mars Helicopter on Its Way to Mars
February 18, 2021 | NASA JPLEstimated reading time: 6 minutes

Ingenuity, a technology experiment, is preparing to attempt the first powered, controlled flight on the Red Planet.
When NASA’s Perseverance rover lands on Mars on Feb. 18, 2021, it will be carrying a small but mighty passenger: Ingenuity, the Mars Helicopter.
The helicopter, which weighs about 4 pounds (1.8 kilograms) on Earth and has a fuselage about the size of a tissue box, started out six years ago as an implausible prospect. Engineers at NASA’s Jet Propulsion Laboratory in Southern California knew it was theoretically possible to fly in Mars’ thin atmosphere, but no one was sure whether they could build a vehicle powerful enough to fly, communicate, and survive autonomously with the extreme restrictions on its mass.
Then the team had to prove in Earthbound tests that it could fly in a Mars-like environment. Now that they’ve checked off those objectives, the team is preparing to test Ingenuity in the actual environment of Mars.
“Our Mars Helicopter team has been doing things that have never been done before – that no one at the outset could be sure could even be done,” said MiMi Aung, the Ingenuity project manager at JPL “We faced many challenges along the way that could have stopped us in our tracks. We are thrilled that we are now so close to demonstrating – on Mars – what Ingenuity can really do.”
Ingenuity survived the intense vibrations of launch on July 30, 2020, and has passed its health checks as it waits to plunge with Perseverance through the Martian atmosphere. But the helicopter won’t attempt its first flight for more than a month after landing: Engineers for the rover and helicopter need time to make sure both robots are ready.
Here are the key things to know about Ingenuity as the anticipation builds:
1. Ingenuity is an experimental flight test.
The Mars Helicopter is what is known as a technology demonstration – a narrowly focused project that seeks to test a new capability for the first time. Previous groundbreaking technology demonstrations include the first Mars rover, Sojourner, and the Mars Cube One (MarCO) CubeSats that flew by Mars.
The helicopter doesn’t carry science instruments and isn’t part of Perseverance’s science mission. Ingenuity’s objective is an engineering one: to demonstrate rotorcraft flight in Mars’ the extremely thin atmosphere, which has just around 1% of the density of our atmosphere on Earth.
Ingenuity will attempt up to five test flights within a 30-Martian-day (31-Earth-day) demonstration window. Its pioneering aspirations are similar to those of the Wright brothers' Flyer, which achieved the first powered, controlled flight on Earth.
2. Mars won’t make it easy for Ingenuity to attempt the first powered, controlled flight on another planet.
Because the Mars atmosphere is so thin, Ingenuity is designed to be light, with rotor blades that are much larger and spin much faster than what would be required for a helicopter of Ingenuity’s mass on Earth.
The Red Planet also has beyond bone-chilling temperatures, with nights as cold as minus 130 degrees Fahrenheit (minus 90 degrees Celsius) at Jezero Crater, the rover and helicopter’s landing site. These temperatures will push the original design limits of the off-the-shelf parts used in Ingenuity. Tests on Earth at the predicted temperatures indicate Ingenuity’s parts should work as designed, but the team is looking forward to the real test on Mars.
“Mars isn’t exactly pulling out the welcome mat,” said Tim Canham, Ingenuity’s operations lead at JPL. “One of the first things Ingenuity has to do when it gets to Mars is just survive its first night.”
3. Ingenuity relies on the Mars 2020 Perseverance mission for safe passage to Mars and for operations on the Red Planet’s surface.
Ingenuity is nestled sideways under the belly of the Perseverance rover with a cover to protect it from debris kicked up during landing. Both the rover and the helicopter are safely ensconced inside a clamshell-like spacecraft entry capsule during the 293-million-mile (471-million-kilometer) journey to Mars. The power system on the Mars 2020 spacecraft periodically charges Ingenuity’s batteries on the way there.
To reach the Martian surface, Ingenuity rides along with Perseverance as it lands. The rover’s entry, descent, and landing system features a supersonic parachute, new “brains” for avoiding hazards autonomously, and components for the sky crane maneuver, which lowers the rover onto Mars from a descent vehicle. Only about 50% of the attempts to land on Mars, by any space agency, have been successful.
Once a suitable site to deploy the helicopter is found, the rover’s Mars Helicopter Delivery System will shed the landing cover, rotate the helicopter to a legs-down configuration, and gently drop Ingenuity on the surface in the first few months after landing. Throughout the helicopter’s commissioning and flight test campaign, the rover will assist with the communications back-and-forth from Earth. The rover team also plans to collect images of Ingenuity.
4. Ingenuity is smart for a small robot.
Delays are an inherent part of communicating with spacecraft across interplanetary distances, which means Ingenuity’s flight controllers at JPL won’t be able to control the helicopter with a joystick. In fact, they won’t be able to look at engineering data or images from each flight until well after the flight takes place.
So Ingenuity will make some of its own decisions based on parameters set by its engineers on Earth. The helicopter has a kind of programmable thermostat, for instance, that will keep it warm on Mars. During flight, Ingenuity will analyze sensor data and images of the terrain to ensure it stays on the flight path designed by project engineers.
5. The Ingenuity team counts success one step at a time.
Given Ingenuity’s experimental nature, the team has a long list of milestones the helicopter must reach before it can take off and land in the spring of 2021. The team will celebrate each milestone:
- Surviving the cruise to Mars and landing on the Red Planet
- Safely deploying to the surface from Perseverance’s belly
- Autonomously keeping warm through the intensely cold Martian nights
- Autonomously charging itself with the solar panel atop its rotors
- Successfully communicating to and from the helicopter via a subsystem known as the Mars Helicopter Base Station on the rover
If the first experimental flight test on another planet succeeds, the Ingenuity team will attempt more test flights.
6. If Ingenuity succeeds, future Mars exploration could include an ambitious aerial dimension.
Ingenuity is intended to demonstrate technologies and first-of-its-kind operations needed for flying in the Martian atmosphere. If successful, these technologies and the experience with flying a helicopter on another planet could enable other advanced robotic flying vehicles that might be part of future robotic and human missions to Mars. Possible uses of a future helicopter on Mars include offering a unique viewpoint not provided by current orbiters high overhead or by rovers and landers on the ground; high-definition images and reconnaissance for robots or humans; and access to terrain that is difficult for rovers to reach. A future helicopter could even help carry light but vital payloads from one site to another.
Related Content:
Goodwinds Composites: Putting a Helicopter on Mars
NASA Invites Public to Share Thrill of Mars Perseverance Rover Landing
RELATED VIDEO:
Suggested Items
NASA Aims to Fly First Quantum Sensor for Gravity Measurements
04/18/2025 | NASAA lumpy, colorful 3D model of the Earth against a black background, illustrating variations in gravity. North and South America are visible. Red areas show higher gravity, blue areas show lower gravity.
Real Time with... IPC APEX EXPO 2025: Aster–Enhancing Design for Effective Testing Strategies
04/18/2025 | Real Time with...IPC APEX EXPOWill Webb, technical director at Aster, stresses the importance of testability in design, emphasizing early engagement to identify testing issues. This discussion covers the integration of testing with Industry 4.0, the need for good test coverage, and adherence to industry standards. Innovations like boundary scan testing and new tools for cluster testing are introduced, highlighting advancements in optimizing testing workflows and collaboration with other tools.
Saki America, Appoints Mario Ramírez Galindo as Project Engineer in Mexico
04/17/2025 | Saki America,Saki America, Inc., an innovator in the field of automated optical and X-ray inspection equipment, is pleased to announce the appointment of Mario Ramírez Galindo as Project Engineer in Mexico. In this role, Mario will support Saki’s customers by providing technical expertise, process optimization, and project management to enhance manufacturing efficiency and inspection accuracy.
New High Power 3D AXI for Power Electronics from Test Research, Inc.
04/17/2025 | TRITest Research, Inc. (TRI), a leading provider of Test and Inspection solutions for the electronics manufacturing industry, proudly announces the launch of the 3D AXI TR7600HP system. Designed for power semiconductor inspection, the TR7600HP enhances accuracy and efficiency in detecting defects in components such as IGBTs, MOSFETs, SiC inverters, and Paladin Connectors.
Real Time with... IPC APEX EXPO 2025: A Close Look at Inspection Technologies in the EMS Industry with Viscom
04/16/2025 | Real Time with...IPC APEX EXPOJuan Briceno, VP Viscom Americas, sits down with Kelly Dack for this interview. Viscom is a leader in inspection technologies for the EMS industry covering various inspection equipment like AOI and X-ray systems. Juan highlights Viscom's role in quality assurance. The discussion includes the impact of artificial intelligence on manufacturing processes and the benefits of 3D inspection techniques for defect detection. The importance of quality control and problem identification through AI is also emphasized.