-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Rogers to Highlight High Speed Digital Laminates & Next Generation Thin Materials for Millimeter Wave Multilayer Designs at DesignCon 2022
April 5, 2022 | Rogers CorporationEstimated reading time: 3 minutes
Rogers Corporation will exhibit at DesignCon in Santa Clara, CA (booth #518) highlighting some of its high-performance circuit materials used in multilayer structures which include a family of thin laminates and bonding materials.
DesignCon is a premiere event for electronic design engineers working on circuit and system levels held at the Santa Clara Convention Center, April 6th-7th.
Some of the products being featured:
Recently introduced Radix™ 3D Printable Dielectrics family of products, is the first available material featuring a dielectric constant of 2.8 and low loss characteristics at microwave frequencies. These printable dielectric materials give radio frequency (RF) designers unprecedented design freedom in creating new components, eliminating the need to consider typical manufacturing design constraints.
Radix3D Printable Dielectrics are proprietary composite materials designed for Digital Light Processing (DLP) 3D printing, enabling a scalable, high-resolution printing process for end-use RF dielectric component manufacturing. Rogers Corporation’s first Radix 3D Printable Dielectric material has a targeted dielectric constant of 2.8 and a dissipation factor of 0.0043 at 10 GHz when cured.
CLTE-MW™ laminates now include lower profile and thinner copper foil options to better serve the needs of designers and PCB fabricators producing millimeter wave PCB circuit designs. The new hyper very low profile (HVLP) ED copper cladding reduces insertion loss of transmission lines operating at 77 GHz by about 20% compared to standard ED copper foil. Additionally, the new HVLP copper cladding option is available in 9 µm, 18 µm and 35 µm thicknesses. These additional copper thickness options provide PCB fabricators more flexibility to achieve tight feature tolerances on signal layers, particularly with sequentially laminated designs.
These laminates are well suited for a range of applications including millimeter wave automotive and industrial radar antennas, 5G millimeter wave base stations and backhaul radios, and phased array radar systems.
SpeedWave™ 300P Ultra-Low Loss Prepreg. With the increasing need for stackup flexibility in high layer count designs for 5G mmWave, high resolution 77 GHz automotive radar, aerospace & defense and high speed digital designs, SpeedWave 300P prepreg offers a broad range of competitively priced high performance options for the circuit designer. SpeedWave 300P prepreg can be used to bond a variety of Rogers’ materials including XtremeSpeed™ RO1200™, CLTE-MW™, and RO4000® series laminates.
This prepreg system offers a low dielectric constant of 3.0 – 3.3 and a low dissipation factor of 0.0019 – 0.0022 at 10 GHz with stable performance over a broad frequency range. This material is offered in multiple spread and open weave glass styles and resin content combinations to maximize stackup options.
RO4000® Products for Multilayer Structures:
Next generation products designed to meet the existing and emerging needs of advanced millimeter wave multilayer designs. RO4835T™ laminates, offered in a 2.5 mil, 3 mil and 4 mil core thickness, are 3.3 Dk, low loss, spread glass reinforced, ceramic filled thermoset materials designed for inner-layer use in multilayer board designs, and they complement RO4835™ laminates when thinner cores are needed.
RO4450T™ 3.2-3.3 Dk, low loss, spread glass reinforced, ceramic filled bonding materials were designed to complement RO4835T laminates and the existing RO4000 laminate family, and come in 2.5, 3, 3.5, 4, 4.5, 5 or 6 mil thicknesses.
RO4835T laminates and RO4450T bonding materials exhibit excellent Dk control for repeatable electrical performance, a low z-axis expansion for plated through-hole reliability, and are compatible with standard epoxy/glass (FR-4) processes. These materials are an excellent choice for multilayer designs requiring sequential laminations, as fully cured RO4000 products are capable of withstanding multiple lamination cycles. RO4835T laminates and RO4450T bondplys have the UL 94 V-0 flame retardant rating, and are compatible with lead-free processes.
RO3003G2™ high frequency laminates build on Rogers’ industry-leading RO3003™ platform to provide designers with improved insertion loss and reduced Dk variation. The combination of Rogers’ optimized resin and filler content along with the introduction of hyper very low-profile ED copper (HVLP) translates to Dk of 3.00 @ 10 GHz (clamped stripline method) and 3.07 @ 77 GHz (microstrip differential phase length method). RO3003G2 laminates also show very low insertion loss of 1.3dB/inch for 5 mil laminates as measured by the microstrip differential phase length method.
Suggested Items
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.