Reliability Comparisons of FPBGA Assemblies Under Hot/Cold Biased Thermal Cycle
August 6, 2024 | Thomas Sanders, Seth Gordon, Reza Ghaffarian, Jet Propulsion LaboratoryEstimated reading time: 1 minute

Current trends in microelectronic packaging technologies continue in the direction of smaller, lighter, and higher density packages. The telecommunications industry and particularly mobile/portable devices have a strong need for lighter and smaller products. The current emerging advanced packaging (AP) technologies, including system-in-package (SiP) and 2.5D/3D stacked packaging, added another level of complexity and challenges for implementation. The AP covers a set of innovative technologies that package integrated circuits (ICs) to increase functionality, improve performance, and provide added value1. In contrast, traditional packaging methods cover different I/O density and I/O pitch depending on the targeted application’s requirements, performance, and cost. The AP with heterogeneous integration added additional thermal challenges compared to a single die package2.
For single-die packaging technologies, the density requirement led to a progression in ball-grid-array (BGA) packaging technologies implemented in early 2000. With increased I/O density and decreased package size, the new generation of fine pitch BGA (FPBGA) packages, such as chip scale packages (CSPs) are introduced. A variety of studies have been conducted examining the reliability of printed circuit board assemblies (PCBAs) using BGAs and FPBGAs3-6. Recently, a guideline on BGA and die size BGA (DSBGA) was released for high-reliability applications with consideration of various environmental requirements for a number of NASA mission applications7. There are significant thermal cycle (TC) test data in the range of -55℃ and 125℃, or lower TC ranges, for commercial and even high-reliability applications, which is covered by IPC 97018.
However, thermal cycle test results under extreme cold and cryogenic conditions, representative of deep-space mission applications, is rare. Tudryn et al.9, presented detailed thermal cycle evaluation for Martian environment including die attachment with wire bonds. Recently, Ghaffarian10 and Ghaffarian et al11 compared the low temperature thermal cycles, including -110°C to 20°C for SnPb solder assemblies. The test results covered surface mount technology (SMT) packages including column grid array (CGA) to hand-soldered plated through-hole (PTH) ceramic pin grid array (PGA) assemblies.
To read the entire article, which originally published in the August 2024 issue of the SMT007 Magazine, click here.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
ASMPT Earns Global Recognition for Outstanding Customer Service in 2025 TechInsights Survey
07/31/2025 |ASMPT has been recognised for excellence in the 2025 TechInsights Global Semiconductor Supplier Survey for the 12th consecutive year. This year, it was ranked third for excellence in customer service among large equipment suppliers.
Libra Industries Launches In-House High Precision Underfill Capabilities
07/17/2025 | Libra IndustriesLibra Industries, a leading provider of systems integration and electronics manufacturing services (EMS), is excited to announce the addition of high-precision underfill to its in‑house manufacturing capabilities.
YES Delivers Multiple VertaCure LX Systems
07/08/2025 | BUSINESS WIREYield Engineering Systems (YES), a leading provider of process equipment for AI and HPC semiconductor applications, announced the delivery of multiple VertaCure™ LX curing systems to one of Taiwan’s top outsourced semiconductor assembly and test (OSAT) providers.
AI, HPC Fuel Advances in Packaging Technology 3DIC, FOPLP, and Chiplet Forums Gain Global Spotlight
07/03/2025 | SEMIAs demand for AI and HPC accelerates, the semiconductor industry is embracing a new era. With Moore’s Law slowing and scaling challenges rising, technologies like 3DIC, panel-level fan-out (FOPLP), chiplets, and co-packaged optics (CPO) are becoming essential for next-level performance and system integration.
Xanadu Opens $10M Advanced Photonic Packaging Facility in Ontario
06/25/2025 | PRNewswireXanadu, a world leader in photonic quantum computing, has opened a $10M world-leading advanced photonic packaging facility in Toronto. This facility represents a significant leap in Canada's quantum supply chain resilience and technical capacity.