-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Why You Need to Take This New ‘Semiconductor Essentials’ Course
August 26, 2024 | I-Connect007 Editorial TeamEstimated reading time: 6 minutes

Recently, Andy Shaughnessy and Nolan Johnson met with Soo Lan Cheah, the developer of a new IPC course geared toward PCB manufacturing professionals who have little to no knowledge about semiconductor manufacturing. With her background in PCB and IC design, Soo Lan brings a circumspect vision of these disciplines and how they are inter-related. You don’t need to know a lot of math to take this course, and you’ll come out with a much better understanding of the whole silicon-to-systems approach.
Nolan Johnson: Soo Lan, what is your vision for this IPC course?
Soo Lan Cheah: This course is an overview of the semiconductor industry and is suitable for participants with little or no knowledge about the semiconductor's technical subjects. We want the attendees to take away some of the key process steps of semiconductor chip development from the initial stages of design, to packaging, and finally to the market delivery. We will look at the history, from the invention of the transistor and how this lead to the invention the IC, the evolution across many decades, right up to these newer AI designs.
Attendees might be thinking they want to change over to the semiconductor industry, but they don’t have semiconductor knowledge, and it could be quite overwhelming if they were to take a full course on the subject. We just want to help answer some basic questions. We utilize proven learning strategies and industry-driven content to create engaging, effective, and efficient learning experiences, enabling participants to learn more in less time. As a result, employers will effectively and rapidly bring new workers to full productivity.
Johnson: What is IPC's goal in bringing more semiconductor awareness to their training courses?
Cheah: The main reason IPC has embarked on this path is that they're expanding the training resources available to members. We have many government-funded projects that are creating a high demand for semiconductor and packaging knowledge. In Malaysia, for instance, there's a need for 60,000 designers and engineers. The goal is to bridge the skills gap.
Johnson: How would this course material be helpful for those working in printed circuit boards?
Cheah: Electronic systems, as a whole, must have ICs. You cannot do without them. Even if you're a board designer, you need to know a little about packaging and the IC to make better decisions about choosing proper packaging. Or maybe you need to know more about the circuit function. There is a relationship; they are all tied together.
For PCB board designers, the benefit of the training is to know more about the IC packaging itself. As a PCB designer, you must know how to work with IC packaging. The packaging could be very traditional or very advanced. It's all related, and we can't do without it. If you’re a board designer, you need to have more information about the packages and the IC internals; it will definitely help you with your current job—or maybe a new job.
Johnson: Are you aiming this course at a specific region or is it more global than that?
Cheah: The training was originally designed for the U.S. market. In fact, we have a new course meeting Mondays and Wednesdays starting September 9, from 6:30-8:30 p.m. We are in the process of signing an MOU with two local training centers in Malaysia, we are taking this class on a more global scale. I’m based in Malaysia, and we will offer this class to them as part of the local HRD Corp funding, and it will be much easier to run the training in Asia. This training is open to any participant, no matter where they live.
Andy Shaughnessy: IPC is promoting the “silicon-to-systems” approach. What should a typical PCB designer need to know about the IC side?
Cheah: The main thing they need to understand about silicon is the packaging. When you look at silicon to systems, the systems we're talking about are the different levels of packaging. The first level is the IC package, which means that it could be 3D packaging at the very advanced end, or it could be something that is closer to what we have now, like a BGA.
Shaughnessy: They won’t have to worry too much about the actual design of the chip, right?
Cheah: No. After all the research and the work that has been done for the IC chip, the roadblock we see is that because the silicon itself is a lot more advanced when compared to the actual package. The bottleneck is actually in the packaging. In other words, the actual package is still way behind—maybe decades behind the IC technology. Now they’re trying to catch up with the packaging, and that's where the advanced packaging comes from.
The bigger companies like Intel have newer technologies: TSV and 3D packaging, for example. They are very niche, very complex, and very expensive. The key point is that although there are some very advanced packages like 3D packaging or 3D-stack die packages, it's not affordable, and therefore, it's not common among PCB manufacturers.
Shaughnessy: Give us a little bit of your background. How did you end up doing both IC and PCB design? Usually, people do one or the other.
Cheah: Yeah. It's very funny how it happened. The PCB design came first because I worked for Mentor Graphics (now Siemens) as an application engineer for about a year, but decided to move into the defense group that dealt with advanced electronic system design. That was where I learned the in-depth details about PCB design and signal integrity. That was almost 25 years ago, and that's how I started in the PCB design industry.
More recently, I transitioned to managing engineering training programs and it was a technology transfer program that initiated the entire path toward lifelong learning. The original training program in PCBs began in Japan, and I was hired as their technical specialist to look after the program and help train the local trainers to take over the curriculum.
I have an MSc degree in microelectronics. They needed someone at the training center to take over the curriculum for custom IC layout design from the Japanese IC design company. So, they assigned me to take up the Cadence Virtuoso software for custom analog IC design. I was involved in teaching this course for almost 10 years.
Shaughnessy: You have a very circumspect view of both sides.
Cheah: I'm just lucky to have this opportunity given to me.
Shaughnessy: It's very rare to meet someone who is knowledgeable about IC in PCB design because they're usually guessing about what's going on over there.
Cheah: I would very much like to help. I realized there are many professionals—or even fresh graduates—who do not have the information they need. I hope this course will be useful for professionals who wish to know more but don't need all the very mathematical details involved. They just want to have an overall concept. It makes sense that IPC is hosting and promoting this course so it’s beneficial to the PCB industry.
Johnson: Thank you very much for taking the time, Soo Lan.
Cheah: Yes, thank you very much for inviting me for the interview.
To register for the September course, click here.
Suggested Items
The Future of Advanced Packaging Inspection Is X-ray
04/22/2025 | David Kruidhof and Kevin Jan, Comet YxlonDriven by smartphones, high-performance computers, and artificial intelligence, the global demand for high-end computing power is constantly rising. The industry is also facing demands for miniaturization, which creates the need for ever-smaller defect recognition. The semiconductor industry has been identifying and solving these challenges for decades using various optical inspection and SEM tools.
Navigating Robotics Deployment Challenges with SINBON
04/18/2025 | PRNewswireIn spite of the potential for robotics technology to expand productivity, several implementation challenges continue to stand in the way of more widespread adoption.
University of Arizona Pioneering Technical Education Beyond Semiconductors
04/18/2025 | Marcy LaRont, PCB007 MagazineWhile many universities struggle to keep their curriculum up to date with the evolving needs of the electronics industry, the University of Arizona stands head and shoulders above the others. Its Center for Semiconductor Manufacturing incorporates five of the colleges at UA and emphasizes an interdisciplinary approach to prepare students for diverse careers in technology and manufacturing.
Test Research, Inc. Honored with ASE Outstanding Supplier Award for 2024
04/15/2025 | TRITest Research, Inc., is proud to announce that it has been recognized with the Outstanding Supplier Award from ASE Technology Holding Co., Ltd.
IPC APEX EXPO Special Sessions: A Focus on Advanced Electronic Packaging
04/09/2025 | Tracy Riggan, IPCThe IPC Technology Solutions team hosted two special sessions on Thursday, March 20 at IPC APEX EXPO 2025 focused on advanced electronic packaging. The first session focused on AI/data center applications and the second on power electronics applications. The day kicked off with opening remarks on strategic direction of IPC in the area of advanced electronic packaging from Matt Kelly, IPC CTO, and an overview of the current landscape of component and system level packaging by Devan Iyer, PhD, IPC chief strategist, advanced packaging.