Time to Ditch Heavy Metal for Soft Rock?
April 8, 2015 | Yash Sutariya and Thomas TarterEstimated reading time: 3 minutes

I've been writing on thermal management for LED applications for a few years now, seemingly on an endless quest to find the next best thing for LED PCBs. It's been kind of like Indiana Jones and his search for the Holy Grail, except I don't have cool bullwhip skills. To date, we've focused on calculating thermal management needs as well as explore other alternatives to MCPCBs to achieve thermal management, such as standard plated through holes in FR4 material. I'd say at this point the industry has reached a saturation point when it comes to knowledge on how to dissipate heat (of course you never know what’s around the corner).
I think now it's time to move on to a topic that we've overlooked when it comes to PCBs for LEDs: reliability! I think the reason we've overlooked reliability is because it is traditionally associated with via life under thermal cycling conditions. Since most LED PCBs are single sided, this really hasn't been an issue. However, if you look above the waterline, there is another weak link—the solder joint. Some OEMs in the industry have been performing studies on the life of their LED products. While the bulbs themselves are said to have useful lives in excess of 30+ years, they are finding out that the actual LED assemblies can fail in as little as 5–6 years. Initial analysis is pointing to the significant X and Y axes CTE differences between the solder joint, copper circuitry layer, thermally conductive dielectric, and the aluminum. The net result of the CTE differences is a shear effect being created that can eventually disrupt the solder joint, which results in operational failure.
Depending upon how accurate this information is, it could mean the start of a whole new approach to PCBs for LED applications. Below is an abstract of a white paper written by Thomas Tarter from Package Science Services, which performed initial testing on carbon fiber and graphite based materials provided by Stablcor Technology Inc. The carbon fiber constraining cores (CFCC) materials evaluated are carbon-fiber and/or graphite reinforced epoxy cores to aid in heat dissipation, rigidity, weight reduction, and CTE control. These cores can be used independently or in conjunction with current MCPCBs to produce functionally improved heat dissipation while reducing the CTE mismatch currently present on LED assemblies.
Abstract: Introduction and Model Parameters (by Thomas Tarter)
Thermal performance for PCB structures are investigated in the form of steady-state finite element models of various stack-ups of commonly used materials for LED applications. The models show the effect of materials used in the stack up including FR-4, aluminum, copper, graphite and CFCC. The goal of the study is to compare relative thermal behavior of typical boards modified with the enhanced core materials.
The materials are inserted into standard PCB stack-up configurations as an added or replaced layer. Models are solved for maximum temperature on a 25 mm x 25 mm coupon with a 2 mm x 2 mm-square heat source. The stack up resembles substrates known as "metal-clad" where the dielectric and topside copper are laminated directly onto a metal substrate. In addition, FR4 boards are used as a worst-case comparison.
Variables used in the study include material properties and layer thickness. The primary variables are top side copper thickness/weight, dielectric thickness and base material thickness. Table 1 lists the ranges for geometry and material properties. The heat source is simulated as a planar load, directly on the surface of the top-layer copper. One watt is applied over a 2mm x 2 mm square area in the center of the coupon. The models are solved in natural convection with an ambient temperature of 30°C.
Editor's Note: This article originally appeared in the March issue of SMT Magazine.
Suggested Items
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
Breaking Silos with Intelligence: Connectivity of Component-level Data Across the SMT Line
06/09/2025 | Dr. Eyal Weiss, CybordAs the complexity and demands of electronics manufacturing continue to rise, the smart factory is no longer a distant vision; it has become a necessity. While machine connectivity and line-level data integration have gained traction in recent years, one of the most overlooked opportunities lies in the component itself. Specifically, in the data captured just milliseconds before a component is placed onto the PCB, which often goes unexamined and is permanently lost once reflow begins.
BEST Inc. Introduces StikNPeel Rework Stencil for Fast, Simple and Reliable Solder Paste Printing
06/02/2025 | BEST Inc.BEST Inc., a leader in electronic component rework services, training, and products is pleased to introduce StikNPeel™ rework stencils. This innovative product is designed for printing solder paste for placement of gull wing devices such as quad flat packs (QFPs) or bottom terminated components.
See TopLine’s Next Gen Braided Solder Column Technology at SPACE TECH EXPO 2025
05/28/2025 | TopLineAerospace and Defense applications in demanding environments have a solution now in TopLine’s Braided Solder Columns, which can withstand the rigors of deep space cold and cryogenic environments.
INEMI Interim Report: Interconnection Modeling and Simulation Results for Low-Temp Materials in First-Level Interconnect
05/30/2025 | iNEMIOne of the greatest challenges of integrating different types of silicon, memory, and other extended processing units (XPUs) in a single package is in attaching these various types of chips in a reliable way.