Graphene Proves a Perfect Fit for Wearable Devices
December 30, 2015 | University of ManchesterEstimated reading time: 2 minutes
Cheap, flexible, wireless graphene communication devices such as mobile phones and healthcare monitors can be directly printed into clothing and even skin, University of Manchester academics have demonstrated.
In a breakthrough paper in Scientific Reports, the researchers show how graphene could be crucial to wearable electronic applications because it is highly-conductive and ultra-flexible.
The research could pave the way for smart, battery-free healthcare and fitness monitoring, phones, internet-ready devices and chargers to be incorporated into clothing and ‘smart skin’ applications – printed graphene sensors integrated with other 2D materials stuck onto a patient’s skin to monitor temperature, strain and moisture levels.
Examples of communication devices include:
- In a hospital, a patient wears a printed graphene RFID tag on his or her arm. The tag, integrated with other 2D materials, can sense the patient’s body temperature and heartbeat and sends them back to the reader. The medical staff can monitor the patient’s conditions wirelessly, greatly simplifying the patient’s care.
- In a care home, battery-free printed graphene sensors can be printed on elderly peoples' clothes. These sensors could detect and collect elderly people’s health conditions and send them back to the monitoring access points when they are interrogated, enabling remote healthcare and improving quality of life.
Existing materials used in wearable devices are either too expensive, such as silver nanoparticles, or not adequately conductive to have an effect, such as conductive polymers.
Graphene, the world’s thinnest, strongest and most conductive material, is perfect for the wearables market because of its broad range of superlative qualities. Graphene conductive ink can be cheaply mass produced and printed onto various materials, including clothing and paper.
The researchers, led by Dr Zhirun Hu, printed graphene to construct transmission lines and antennas and experimented with these in communication devices, such as mobile and Wifi connectivity.
Using a mannequin, they attached graphene-enabled antennas on each arm. The devices were able to ‘talk’ to each other, effectively creating an on-body communications system.
Page 1 of 2
Suggested Items
Aismalibar to Showcase Advanced Thermal Management Solutions at APEC 2025
03/13/2025 | AismalibarAismalibar, a global leader in high-performance thermal management materials, is set to exhibit at APEC 2025 (Applied Power Electronics Conference) in Atlanta, Georgia, from March 16–20, 2025. As the premier event for power electronics professionals, APEC provides a crucial platform for industry leaders to explore the latest advancements in thermal interface materials (TIMs), high-performance PCB laminates, and insulated metal substrates (IMS).
LPMS USA Named the Authorized National Distributor for Henkel Printed Electronics Inks and Coatings
03/05/2025 | LPMS USALPMS USA, a leader in low pressure molding solutions, is proud to announce they have been named the authorized national distributor for Henkel printed electronics inks and coatings.
Why Rare Earth Minerals Are Critical to the Supply Chain; A Strategic Opportunity for U.S. Manufacturing, Technology & Defense
03/05/2025 | LMA Consulting Group, Inc.Without rare earth minerals, modern manufacturing, technology, and defense industries simply cannot function. These critical materials are essential for producing semiconductors, EV batteries, pharmaceuticals, aerospace components and AI-driven technology.
AGC Multi Material is Highlighting their Range of Substrate Materials at IPC APEX EXPO 2025
03/04/2025 | AGC Multi Material AmericaAGC Multi Material America (AMMA) is exhibiting in the IPC Apex exhibition in Anaheim, CA on March 18 - 20, 2025.
Flexible Thinking Flexible Circuit Technology—Looking Back and Forward
03/03/2025 | Joe Fjelstad -- Column: Flexible ThinkingFlexible circuit technology came on the scene as a solution largely for niche applications, however, the technology has emerged in recent years as a cornerstone of modern electronics. Today, the technology is enabling a broad range of new product designs across industries. From wearable devices and medical implants to foldable smartphones and numerous automotive applications, flexible circuits are arguably at the heart of much of the next generation of innovations.