-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueAdvancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Happy’s Essential Skills: Problem Solving
February 24, 2016 | Happy HoldenEstimated reading time: 4 minutes

Related to TQC and a very important role of an engineer is solving problems. Using a problem solving methodology is a job that all engineers will use sooner or later, but if you are in product or process engineering in manufacturing, it will be sooner! This was the situation that introduced me to printed circuit manufacturing.
I started at Hewlett-Packard in the very new department of integrated circuit manufacturing. What a wild environment that was in 1970! After six months of orientation and familiarization, the bosses came to me one day with an urgent offer: “You are our only chemical engineer and we are in a crisis in our new printed circuit manufacturing plant. Will you go down the hill and help solve the process problems that are plaguing them?”
“Sure,” I said. “What are printed circuits?”
He answered, “They’re just large integrated circuits!”
I went down the hill (from Page Mill Road to Porter Drive in Palo Alto), solved their process problems in a few weeks…and never left! I had two tools the electrical and mechanical engineers in the PCB plant didn’t have: engineering statistics, including design of experiments (DOE—more in the next column) and experience with problem solving—TQC.
In electronics manufacturing today, problems in production will involve numerous customers. Customer communication is essential. The timing of this communication depends on how quickly the supplier is expected to correct the issue. Feedback should be specific and detailed, including part number, lot number, invoice, date received, and supporting evidence such as photographs and test results if available. The supplier will need this information to conduct an investigation of root cause and develop a corrective action plan.
For serious quality problems that generate scrap or rework, customers will insist that the supplier submit a written document that describes the investigation and corrective actions, or a corrective action report (CAR). The purpose of the document is to provide a record of the problem solving, and establish confidence that the supplier has successfully addressed the issue and that the issue will not recur.
When selecting a problem solving process, it is important to understand when you should—and should not—use structured problem solving. Therefore, an understanding of problem solving methodology is crucial. Once you have selected a process to use, be sure to document and communicate progress throughout the project.
Already written about in this column is the TQC PDCA Process: Plan—Do—Check—Act. Also, the six-sigma DMAIC process: Define—Measure—Analyze—Improve—Control. Familiar to many of you would be the general scientific method:
- Define the question/make observations
- Gather information and facts
- Form hypothesis
- Perform experiments and collect data
- Analyze data
- Interpret data and draw conclusions
- Summarize results
A common methodology used by many suppliers is ‘Eight Disciplines Problem Solving’ (8D), created by the U.S. Department of Defense and popularized by Ford (Table 1), and the CAR based on this process is sometimes referred to as an 8D report. Another popular methodology is the ‘7-Step Problem Resolution Process’, attributed to Toyota and described in Table 2.
My favorite is the problem solving methodology that is taught by Kepner-Tregoe[1]. This is a rigorous three-day course, usually referred to as KT, which has expanded the problem solving processes into four areas: Situation Appraisal—Problem Analysis—Decision Analysis—Potential Problem Analysis (Figure 1). Its three action sequences (Figure 2) summarize the important steps in the KT process.
Figure 1: Kepner-Tregoe Problem Solving Process©® (courtesy Kepner-Tragoe).
Figure 2: Kepner-Tregoe Problem Action Sequence©® (courtesy Kepner-Tragoe).
Page 1 of 2
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Alternative Manufacturing, Inc. (AMI) Announces Commitment to Excellence in Industrial, Defense, Aerospace, Renewables, and Robotics Markets
09/16/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing, Inc. (AMI), a 100% employee-owned contract manufacturer, proudly reaffirms its leadership in the electronics manufacturing services (EMS) industry with a continued commitment to delivering high-quality PCBAs and box builds across the industrial, defense, aerospace, renewable energy, and robotics markets.
Sustainability and Selective Soldering
09/15/2025 | Dr. Samuel J. McMaster, Pillarhouse InternationalSustainability is more than just a buzzword for the electronics industry; it’s a key goal for all manufacturing processes. This is more than a box-ticking exercise or simply doing a small part for environmentally friendly processes. Moving toward sustainable solutions drives innovation and operational efficiency.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
Integrating Uniplate PLBCu6 With the Digital Factory Suite
09/12/2025 | Giovanni Obino and Andreas Schatz, MKS' AtotechPrinted circuit board manufacturing is rapidly changing, driven by miniaturization, stringent reliability requirements, and growing pressure for sustainable production. Meeting these challenges requires more than incremental improvements; it demands a combination of precise equipment and real-time process intelligence. The pairing of Uniplate® PLBCu6 with the Digital Factory Suite (DFS) demonstrates how hardware and software can work together to create more responsive, resource-efficient manufacturing.