-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
The Impact of Via and Pad Design on QFN Assembly
January 25, 2017 | David Geiger, Anwar Mohammed and Jennifer Nguyen, FlexEstimated reading time: 3 minutes

ABSTRACT
Quad flat no-lead (QFN) packages have become very popular in the industry and are widely used in many products. These packages have different size and pin counts, but they have a common feature: a thermal pad at the bottom of the device. The thermal pad of the leadless QFN provides efficient heat dissipation from the component to PCB. In many cases, a thermal via array under the component is used to conduct heat away from the device. However, thermal vias can create more voids or result in solder protrusion onto the secondary side.
This paper discusses our study on the impact of via size and via design on QFN voiding and solder protrusion. Does a small via prevent the solder to flow to the other side? How should the via be designed? Which via type will have less of a voiding issue? A comprehensive experiment was designed to try to answer these questions. Different QFN types, via design, via sizes, via pitches and stencil design were studied using three different board thicknesses: 1.6 mm, 2.4 mm and 3.2 mm.
Introduction
Quad flat no-lead package is designed so that the thermal pad is exposed on the bottom of the component. This creates a low thermal resistance path between the die and the exterior of the package and provides excellent heat dissipation from the component to PCB. Thermal vias in the PCB thermal pad are typically used to conduct the heat away from the device and to transfer effectively the heat from the top copper layer of the PCB to the inner or bottom copper layer or to the outside environment. A cross-section view of QFN and PCB thermal vias is shown in Figure 1.
Figure 1: Cross-section of QFN and PCB structure.
There are several publications about the PCB layout guidelines for QFN packages requiring thermal vias[1-2]. Some recommend thermal vias in the solder mask defined thermal pad[2] while others place the thermal vias directly on the thermal pad without any solder mask[1]. The solder mask around the via can keep the solder away from the via and prevent it from flowing into the via. However, the solder mask ring tends to create more voids or unsoldered areas at the thermal pad. On the other hand, the solder can flow into the thermal vias if there is no solder mask ring and result in solder loss and solder protrusion onto the secondary side, which can interfere with the assembly process and become a quality issue. In this paper, we will discuss the impact of via design, board design and process parameters on solder protrusion at the thermal pad’s vias. QFN voiding is a known industry challenge with many publications[3–6]. The influence of via design and processes on voiding will also be presented in the paper.
Experimental Details
Test Vehicle and Components
A QFN test vehicle was designed for this study. The test vehicle had the dimension of 177 x 177 mm. The board surface finish was immersion silver (I-Ag). Three different board thicknesses of 1.6 mm (62 mil), 2.4 mm (93 mil) and 3.2 mm (125 mil) were investigated. The image of the test vehicle is shown in Figure 2.
Figure 2: Flex QFN test vehicle Rev 2.
Six different QFN packages with different pin counts and component body size were included in the test vehicle. Both single row and dual row QFN components were studied. The QFN pitch varied from 0.4 mm, 0.5 mm to 0.65 mm. The QFN component body size ranged from 3 x 3 mm to 12 x 12 mm.
Design Variables
Many via variables were designed into the test vehicle, including via size, via pitch and via design. Five different via sizes were investigated. They were 0.20 mm (8 mil), 0.22 mm (9 mil), 0.25 mm (10 mil), 0.30 mm (12 mil), and 0.51 mm (20 mil). Via spacing was 0.5 mm, 1 mm and 1.27 mm. Most through hole vias with no solder mask ring were used while some vias were designed with the solder mask around the via.
Process Variables
Besides the component, board thickness and via design variables, the study also included two different stencil designs. Window pane aperture opening and 1:1 pad aperture opening stencils were used. For the window pane design, the solder paste was printed away from the vias except at the 0.5 mm via pitch locations. For the 1:1 pad design, the paste was printed over the vias. In addition, the boards were reflowed using air and nitrogen, and were reflowed using two different reflow ovens.
To read this entire article, which appeared in the November 2016 issue of SMT Magazine, click here.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Koh Young, Fuji, and Kurtz ERSA Drive Smart Manufacturing Solutions for EV and Automotive Electronics at Kunshan, China Technical Seminar
09/11/2025 | Koh YoungKoh Young Technology, the global leader in True 3D measurement-based inspection solutions, partnered with Fuji Corporation and Kurtz ERSA to host an exclusive technical seminar for leading automotive manufacturers in East China. Held on September 4 at Fuji’s factory in Kunshan, the event gathered participants representing over 35 companies.
MacDermid Alpha Presents at SMTA New Delhi, Bangalore Chapter, on Flux–OSP Interaction
09/09/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha contributes technical insights on OSP solderability at the Bangalore Chapter, SMTA reinforcing commitment to knowledge-sharing and industry collaboration.
Electra’s ElectraJet EMJ110 Inkjet Soldermask Now in Black & Blue at Sunrise Electronics
09/08/2025 | Electra Polymers LtdFollowing the successful deployment of Electra’s Green EMJ110 Inkjet Soldermask on KLA’s Orbotech Neos™ platform at Sunrise Electronics in Elk Grove Village, Illinois, production has now moved beyond green.
Absolute EMS: The Science of the Perfect Solder Joint
09/05/2025 | Absolute EMS, Inc.Absolute EMS, Inc., a six-time award-winning provider of fast turnaround, turnkey contract electronic manufacturing services (EMS), is drawing attention to the critical role of 3D Solder Paste Inspection (SPI) in ensuring the reliability of both FLEX and rigid printed circuit board assemblies (PCBAs).
Indium Corporation to Highlight High-Reliability Solder Solutions at SMTA Guadalajara Expo
09/04/2025 | Indium CorporationIndium Corporation, a leading materials refiner, smelter, manufacturer, and supplier to the global electronics, semiconductor, thin-film, and thermal management markets, will feature a range of innovative, high-reliability solder products for printed circuit board assembly (PCBA) at the SMTA Guadalajara Expo and Tech Forum, to be held September 17-18 in Guadalajara, Mexico.