-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
Fueling the Workforce Pipeline
We take a hard look at fueling the workforce pipeline, specifically at the early introduction of manufacturing concepts and business to young people in this issue of PCB007 Magazine.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Scientists Harness Solar Power to Produce Clean Hydrogen From Biomass
March 14, 2017 | University of CambridgeEstimated reading time: 3 minutes

A team of scientists at the University of Cambridge has developed a way of using solar power to generate a fuel that is both sustainable and relatively cheap to produce. It’s using natural light to generate hydrogen from biomass.
One of the challenges facing modern society is what it does with its waste products. As natural resources decline in abundance, using waste for energy is becoming more pressing for both governments and business.
Biomass has been a source of heat and energy since the beginning of recorded history. The planet’s oil reserves are derived from ancient biomass which has been subjected to high pressures and temperatures over millions of years. Lignocellulose is the main component of plant biomass and up to now its conversion into hydrogen has only been achieved through a gasification process which uses high temperatures to decompose it fully.
Dr Moritz Kuehnel, from the Department of Chemistry at the University of Cambridge, joint lead author on a new research paper published in Nature Energy, says:
"Lignocellulose is nature's equivalent to armoured concrete. It consists of strong, highly crystalline cellulose fibres, that are interwoven with lignin and hemicellulose which act as a glue. This rigid structure has evolved to give plants and trees mechanical stability and protect them from degradation, and makes chemical utilisation of lignocellulose so challenging."
The new technology relies on a simple photocatalytic conversion process. Catalytic nanoparticles are added to alkaline water in which the biomass is suspended. This is then placed in front of a light in the lab which mimics solar light. The solution is ideal for absorbing this light and converting the biomass into gaseous hydrogen which can then be collected from the headspace. The hydrogen is free of fuel-cell inhibitors, such as carbon monoxide, which allows it to be used for power.
The nanoparticle is able to absorb energy from solar light and use it to undertake complex chemical reactions. In this case, it rearranges the atoms in the water and biomass to form hydrogen fuel and other organic chemicals, such as formic acid and carbonate.
Joint lead author, Dr David Wakerley, also of the Department of Chemistry, says:
“There’s a lot of chemical energy stored in raw biomass, but it’s unrefined, so you can’t expect it to work in complicated machinery, such as a car engine. Our system is able to convert the long, messy structures that make up biomass into hydrogen gas, which is much more useful. We have specifically designed a combination of catalyst and solution that allows this transformation to occur using sunlight as a source of energy. With this in place we can simply add organic matter to the system and then, provided it’s a sunny day, produce hydrogen fuel.”
The team used different types of biomass in their experiments. Pieces of wood, paper and leaves were placed in test tubes and exposed to solar light. The biomass didn’t require any processing beforehand.
The technology was developed in the Christian Doppler Laboratory for Sustainable SynGas Chemistry at the University of Cambridge. The head of the laboratory, Dr. Erwin Reisner, adds:
“Our sunlight-powered technology is exciting as it enables the production of clean hydrogen from unprocessed biomass under ambient conditions. We see it as a new and viable alternative to high temperature gasification and other renewable means of hydrogen production.
Future development can be envisioned at any scale, from small scale devices for off-grid applications to industrial-scale plants, and we are currently exploring a range of potential commercial options."
With the help of Cambridge Enterprise, the commercialisation arm of the University, a UK patent application has been filed and talks are under way with a potential commercial partner.
Suggested Items
Paige Fiet: From Emerging Engineer to Quality at TTM
03/19/2025 | Marcy LaRont, PCB007 MagazinePaige Fiet is a graduate of the IPC Emerging Engineer program and now works at TTM Technologies in Logan, Utah. She was an IPC Student Board Member and has been a columnist for I-Connect007. She is a stellar example and an encouragement to other young engineers about how to be successful in your early career.
IPC APEX EXPO 2025: And So It Begins
03/18/2025 | Nolan Johnson, I-Connect007The IPC APEX EXPO 2025 show floor opens today, but technical, educational, and, of course, standards committee work has been underway during the preceding weekend. In typical spring fashion, the weather has vacillated between sunny and warm to a spot of rain late on Monday afternoon just as many conference goers were headed back to their nearby hotels.
Punching Out: Fewer Than 150 PCB Shops Remain in North America
03/20/2025 | Tom Kastner -- Column: Punching Out!According to GP Ventures’ database, the number of printed circuit board manufacturing companies in North America (including Canada), is now below 150. In 2020, it was around 200, and in 2022, it was 170. These figures do not include companies that only import or assemble boards. Please note that we are counting PCB companies and not facilities, so TTM Technologies counts as one, Summit as one, AdvancedPCB as one, etc. The total number of facilities is probably higher by around 30.
Wistron Recognized as Top 100 Global Innovators for Four Consecutive Years
03/14/2025 | WistronWistron has been recognized as one of the 2025 Top 100 Global Innovators by Clarivate. Since 2022, Wistron has been honored with this recognition for four consecutive years.
KYZEN Announces the Retirement of Longtime Executive Vice President Tom Forsythe
03/13/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, announces the retirement of Tom Forsythe, Executive Vice President, effective December 31, 2024, after more than three decades of service to the company and the electronics manufacturing industry.