Body Heat Could Electrically Power IoT Devices
April 6, 2017 | Purdue UniversityEstimated reading time: 2 minutes
A Purdue University-developed technology that can be woven into a specially designed fabric could help harness human body heat and provide energy to power Internet of things (IoT) devices including heart and respiration monitors and fulfill other uses.
Kazuaki Yazawa, a research associate professor at Discovery Park’s Birck Nanotechnology Center at Purdue University, developed the flexible thermoelectric generator technology, which uses semiconductor strings woven into a fabric. The generator takes heat from any type of complex surface it meets and converts it into a small amount of electricity.
Yazawa said the new technology addresses the limitations of conventional thermoelectric generators.
“The human body provides a significantly low-heat flux which requires thicker thermoelectric elements. Optimum size should be larger than one inch in order to generate high power output,” he said. “These characteristics limit the technologies use as it is very rigid and cannot effectively fit the three-dimensional form of the body.”
Yazawa said the unique woven semiconductor strings used in this novel technology promise to replace conventional thermoelectric generators by making them more flexible and easier to manage.
“The only way to reduce the thickness of the module is by designing the thermoelectric generator using a weaving technique. This allows the technology to be very flexible and dense,” Yazawa said. “Lengthening the threads and using a unique combination of insulation makes the generator more flat and manageable, which makes it ideal for use in clothing or any shape that can be wrapped in a flexible fabric that has waste heat such as a chimney or coffee cup.
“Additionally, these semiconductor strings are able to harness the maximum amount of heat from the body or other ambient heat sources, providing reliable power for internet of things devices. This can eliminate the need for batteries.”
Yazawa said the technology could greatly benefit tech wearables like those in the medical and healthcare industry.
“Heart monitors, respiration and perspiration monitors are very useful for the elderly or those recovering from a trauma. There also is a huge market for wearables in sports to optimize human performance,” he said. “If you have a patient or an athlete who is overheating, real-time information of their vitals could be used by coaches and medical professionals to better monitor and treat their players or patients. These types of devices need energy to be actively charged so they can be used continually.”
Yazawa said the technology also could provide a cooling effect.
“Anything that takes heat and converts it to another form of energy is also providing a cooling effect. Therefore, this technology also could provide a continuous cooling treatment,” he said. “This could be especially beneficial from a sports or military perspective. The flexible substrate could be applied to undergarments and when athletes are running the technology could help give that little bit of charge."
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Blaize, Technology Control Company Partner to Power Saudi Arabia’s Next-Generation AI Innovation Infrastructure
09/17/2025 | BUSINESS WIREBlaize Holdings, Inc., a leader in programmable, energy-efficient edge AI computing, and Technology Control Company (TCC), a leading technology solutions provider in the Kingdom of Saudi Arabia (KSA), announced a strategic partnership to advance Saudi Arabia’s AI innovation infrastructure and accelerate its digital transformation goals.
BLT Joins Microchip Partner Program as Design Partner
09/17/2025 | BUSINESS WIREBLT, a U.S.-owned and operated engineering design services firm announced it has joined the Microchip Design Partner Program.
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
On the Line With… Podcast: UHDI and RF Performance
09/17/2025 | I-Connect007I-Connect007 is excited to announce the release of a new episode in its latest On the Line with... podcast series, which shines a spotlight on one of the most important emerging innovations in electronics manufacturing: Ultra-High-Density Interconnect (UHDI).
Altair, Wichita State University’s NIAR Sign MoU to Accelerate Aerospace Innovation
09/16/2025 | AltairAltair, a global leader in computational intelligence, and Wichita State University’s (WSU) National Institute for Aviation Research (NIAR), one of the world’s leading aerospace research institutions, have signed a memorandum of understanding (MoU) to advance innovation across the aerospace and defense industries.