-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Quantum Communication With a Satellite
July 17, 2017 | Max-Planck-Gesellschaft, MünchenEstimated reading time: 7 minutes
What started out as exotic research in physics laboratories could soon change the global communication of sensitive data: quantum cryptography. Interest in this technique has grown rapidly over the last two years or so. The most recent work in this field, which a team headed by Christoph Marquardt and Gerd Leuchs at the Max Planck Institute for the Science of Light in Erlangen is now presenting, is set to heighten the interest of telecommunications companies, banks and governmental institutions even further. This is due to the fact that the physicists collaborating with the company Tesat-Spacecom and the German Aerospace Center have now created one precondition for using quantum cryptography to communicate over large distances as well without any risk of interception. They measured the quantum states of light signals which were transmitted from a geostationary communication satellite 38,000 kilometres away from Earth. The physicists are therefore confident that a global interception-proof communications network based on established satellite technology could be set up within only a few years.
More versatile than originally thought: A part of the Alphasat I-XL was actually developed to demonstrate data transmission between the Earth observation satellites of the European Copernicus project and Earth, but has now helped a group including researchers from the Max Planck Institute for the Science of Light to test the measurement of quantum states after they have been transmitted over a distance of 38,000 kilometres. ESA
Sensitive data from banks, state institutions or the health sector, for example, must not fall into unauthorized hands. Although modern encryption techniques are far advanced, they can be cracked in many cases if significant, commensurate efforts are expended. And conventional encryption methods would hardly represent a challenge for the quantum computers of the future. While scientists used to think that the realization of such a computer was still a very long way off, considerable progress in the recent past has now raised physicists’ hopes. “A quantum computer could then also crack the data being stored today,” as Christoph Marquardt, leader of a research group at the Max Planck Institute for the Science of Light, states. “And this is why we are harnessing quantum cryptography now in order to develop a secure data transfer method.”
Quantum mechanics protects a key against spies
In quantum cryptography, two parties exchange a secret key, which can be used to encrypt messages. Unlike established public key encryption methods, this method cannot be cracked as long as the key does not fall into the wrong hands. In order to prevent this from happening, the two parties send each other keys in the form of quantum states in laser pulses. The laws of quantum mechanics protect a key from spies here, because any eavesdropping attempt will inevitably leave traces in the signals, which sender and recipient will detect immediately. This is because reading quantum information equates to a measurement on the light pulse, which inevitably changes the quantum state of the light.
In the laboratory and over short distances quantum key distribution already works rather well via optical fibres that are used in optical telecommunications technology. Over large distances the weak and sensitive quantum signals need to be refreshed, which is difficult for reasons similar to those determining the fact that that laser pulses cannot be intercepted unnoticed. Christoph Marquardt and his colleagues are therefore relying on the transmission of quantum states via the atmosphere, between Earth and satellites to be precise, to set up a global communications network that is protected by quantum cryptography.
Laser communication to the orbit: The infrared image shows the ground station for the communication with the Alphasat I-XL satellite 38,000 kilometres away. The receiver sends an infrared laser beam in the direction of the orbit so that the satellite can find it. Since the beam is scattered by a higher atmospheric layer, it appears as a larger spot. Imran Khan, MPI for the Science of Light
Measuring the light from Alphasat I-XL at the quantum level
In their current publication, the researchers showed that this can largely be based on existing technology. Using a measuring device on the Canarian island Teneriffe, they detected the quantum properties of laser pulses which the Alphasat I-XL communications satellite had transmitted to Earth. The satellite circles Earth on a geostationary orbit and therefore appears to stand still in the sky. The satellite, which was launched in 2013, carries laser communication equipment belonging to the European Space Agency ESA. The company Tesat-Spacecom, headquartered in Backnang near Stuttgart, developed the technology in collaboration with the German Aerospace Center as part of the European Copernicus project for Earth observation, which is funded by the German Federal Ministry for Economic Affairs and Energy.
While Alphasat I-XL was never intended for quantum communication, “we found out at some stage, however, that the data transmission of the satellite worked according to the same principle as that of our laboratory experiments,” explains Marquardt, “which is by modulating the amplitude and phase of the light waves.” The amplitude is a measure for the intensity of the light waves and the mutual shift of two waves can be determined with the aid of the phase.
The laser beam is 800 metres wide after travelling 38,000 kilometres
For conventional data transmission, the modulation of the amplitude, for example, is made particularly large. This makes it easier to read out in the receiver and guarantees a clear signal. Marquardt and his colleagues were striving to achieve the exact opposite, however: in order to get down to the quantum level with the laser pulses, they have to greatly reduce the amplitude.
The signal, which is therefore already extremely weak, is attenuated a great deal more as it is being transmitted to Earth. The largest loss occurs due to the widening of the laser beam. After 38,000 kilometres, it has a diameter of 800 metres at the ground, while the diameter of the mirror in the receiving station is a mere 27 centimetres. Further receiving mirrors, which uninvited listeners could use to eavesdrop on the communication, could easily be accommodated in a beam which is widened to such an extent. The quantum cryptography procedure, however, takes this into account. In a simple picture it exploits the fact that a photon – which is what the signals of quantum communication employ – can only be measured once completely: either with the measuring apparatus of the lawful recipient or the eavesdropping device of the spy. The exaction location of where a photon is registered within the beam diameter, however, is still left to chance.
The experiment carried out at the beginning of 2016 was successful despite the greatly attenuated signal, because the scientists found out that the properties of the signals received on the ground came very close to the limit of quantum noise. The noise of laser light is the term physicists use to describe variations in the detected photons. Some of this irregularity is caused by the inadequacies of the transmitting and receiving equipment or turbulences in the atmosphere, and can therefore be avoided in principle. Other variations result from the laws of quantum physics - more precisely the uncertainty principle - according to which amplitude and phase of the light cannot be specified simultaneously to any arbitrary level of accuracy.
Quantum cryptography can use established satellite technology
Since the transmission with the aid of the Tesat system already renders the quantum properties of the light pulses measurable, this technique can be used as the basis on which to develop satellite-based quantum cryptography. “We were particularly impressed by this because the satellite had not been designed for quantum communication,” as Marquardt explains.
Together with their colleagues from Tesat and other partners, the Erlangen physicists now want to develop a new satellite specifically customized for the needs of quantum cryptography. Since they can largely build on tested and tried technology, the development should take much less time than a completely new development. Their main task is to develop a board computer designed for quantum communication and to render the quantum mechanical random number generator space-proof, which supplies the cryptographic key.
Consequently, quantum cryptography, which started out as an exotic playground for physicists, became quite close to practical application. The race for the first operational secure system is in full swing. Countries such as Japan, Canada, the USA and China in particular are funneling a lot of money into this research. “The conditions for our research have changed completely,” explains Marquardt. “At the outset, we attempted to whet industry’s appetite for such a method, today they are coming to us without prompting and asking for practicable solutions.” These could become reality in the next five to ten years.
Suggested Items
Case Study: PCB Design Flaws Affect Product Cost
12/03/2024 | Matt Stevenson, ASC SunstoneIn the rapidly evolving aerospace industry, precision and reliability are paramount. “AeroTech Solutions” (not the company’s real name), an aerospace company specializing in satellite technology, recently faced a significant challenge that tested its operational integrity: A flaw identified in the PCB design of its latest satellite model led to unexpected delays and cost overruns.
VORAGO Technologies, Collabora Partner to Advance Open Source in Space
11/25/2024 | GlobeNewswireVORAGO Technologies, a leading provider of radiation hardened and radiation tolerant MCUs and MPUs for Aerospace and Defense, and Collabora, a leader in open source software and support, announced they are partnering to advance the use of open source to achieve resilience for mission critical applications in space.
Aeluma Secures NASA Contract to Advance Quantum Dot Photonic Integrated Circuits for Aerospace and AI Applications
11/25/2024 | ACCESSWIREAeluma, Inc., a semiconductor company specializing in high-performance, scalable technologies for mobile, automotive, AI, defense and aerospace, communication and quantum computing, announced it has been awarded a contract by NASA to develop quantum dot photonic integrated circuits (PICs) on silicon.
AirBorn Announces Agreement to be Acquired by Molex
11/18/2024 | PRNewswireAirBorn, a global manufacturer of high reliability electronics and components, announced it has entered into an agreement to be acquired by Molex, a leading global connectivity and electronics solutions provider.
RTX's Collins Aerospace to Provide UK Chinook Helicopters with Interoperable Avionics System
11/12/2024 | RTXCollins Aerospace, an RTX business, has received a $19 million contract from the Department of Defense to equip a fleet of new H-47 Chinooks for the UK Royal Air Force with its Common Avionics Architecture System (CAAS) avionics management suite.