Processing of Silkworm Silk for Applications in Flexible Electronics
August 21, 2017 | American Chemical SocietyEstimated reading time: 2 minutes

From smart socks to workout clothes that measure exertion, wearable body sensors are becoming the latest “must-have” technology. Now scientists report they are on the cusp of using silk, one of the world’s most coveted fabrics, to develop a more sensitive and flexible generation of these multi-purpose devices that monitor a slew of body functions in real time.
The researchers are presenting their work today at the 254th National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world’s largest scientific society, is holding the meeting here through Thursday. It features nearly 9,400 presentations on a wide range of science topics.
“There is a whole world of possibilities for silk sensors at the moment. Silk is the ideal material for fabricating sensors that are worn on the body,” Yingying Zhang, Ph.D., says. “One possibility we foresee is for them to be used as an integrated wireless system that would allow doctors to more easily monitor patients remotely so that they can respond to their medical needs more rapidly than ever before.”
Body sensors, which are usually made with semiconductors, have shown great potential for monitoring human health. But they have limitations. For instance, strain sensors, which measure changes in force, cannot be highly sensitive and highly stretchable at the same time. Silk, a natural material that is stronger than steel and more flexible than nylon, could overcome these problems. The fiber is also lightweight and biocompatible. However, silk doesn’t conduct electricity very well. To address this challenge, Zhang and colleagues at Tsinghua University in China sought to find a way to boost the conductivity of silk so it could be successfully used in body-sensing devices.
The researchers decided to try two different strategies. In one approach, they treated the silk in an inert gas environment with temperatures ranging from 1,112 degrees to 5,432 degrees Fahrenheit. As a result, the silk became infused with N-doped carbon with some graphitized particles, which is electrically conductive. Using this technique, the scientists have developed strain sensors, pressure sensors and a dual-mode sensor capable of measuring temperature and pressure simultaneously.
In the other approach, the team fed either graphene or carbon nanotubes to silkworms. Some of these nanoparticles were naturally incorporated into the silk produced by the worms. So far, this method hasn’t produced electrically conductive fibers, but the researchers are still experimenting with this technique and are hopeful they can make it work.
Based on the preliminary results, Zhang wants to explore ways to create an integrated set of silk-based, self-sustaining sensors that would be powered by nano-generators. She also suggests that her team’s silk sensors might be used to build more realistic robots that can sense touch, temperature or humidity and can even distinguish between different people’s voices.
Zhang acknowledges funding from the National Natural Science Foundation of China and the Key Technologies Basic Research and Development Program.
The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.
Suggested Items
Legislative Update – The SEMI Investment Act: Inclusive of PCB and Substrates?
05/13/2025 | I-Connect007 Editorial TeamIn response to yesterday’s news around new U.S. legislation being put forth by SEMI to support our domestic electronics supply chain–The SEMI Investment Act, or the Strengthening Essential Manufacturing and Industrial Act– I reached out to IPC’s Richard Capetto, chief lobbyist and a principal member of IPCs Global Relations and Advocacy team.
The Test Connection Inc. Appoints USM Reps as Exclusive Sales Representative in Mexico
05/13/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a leading provider of electronic test and manufacturing solutions, is pleased to announce the appointment of USM Reps as its exclusive sales representative in Mexico.
Top 10 OSAT Companies of 2024 Revealed—China Players See Double-Digit Growth, Reshaping the Global Market Landscape
05/13/2025 | TrendForceTrendForce’s latest report on the semiconductor packaging and testing (OSAT) sector reveals that the global OSAT industry in 2024 faced dual challenges from accelerating technological advancements and ongoing industry consolidation.
Beyond the Board: Empowering the Next Generation of Tech Innovators in Electronics
05/13/2025 | Jesse Vaughan -- Column: Beyond the BoardThe electronics industry is at the heart of technological progress, driving innovative advancements that shape our world. Yet, despite the sector's rapid evolution, it faces a looming challenge: attracting and retaining young talent. With an aging workforce and an increasing demand for skilled professionals, the industry must find ways to inspire the next generation of innovators.
TT Electronics Secures £50 Million in New Contract Awards for Classified U.S. DoD Defense Programs
05/12/2025 | TT ElectronicsTT Electronics, a leading provider of global manufacturing solutions and engineered technologies, announced today that it has been awarded significant new contracts totalling over £50 million to support classified U.S. Department of Defense (DoD) programs.