Fujitsu Develops World's First Wearable, Hands-Free Speech Translation Device
September 21, 2017 | FujitsuEstimated reading time: 6 minutes
Fujitsu Laboratories Ltd. today announced the development of the world's first wearable, hands-free speech translation device, suitable for tasks in which the users' hands are often occupied, such as in diagnoses or treatment in healthcare.
In recent years, with an increase in the number of visitors to Japan, more and more non-Japanese patients are going to hospitals, creating issues in supporting communication in multiple languages. In 2016, Fujitsu Laboratories developed hands-free technology that recognizes people's voices and the locations of speakers, and that automatically changes to the appropriate language without physical manipulation of the device. That same year, it also worked with the University of Tokyo Hospital and the National Institute of Information and Communications Technology (NICT) to conduct a field trial of multilingual speech translation in the medical field using stationary-type tablets. Based on the results, Fujitsu Laboratories learned that, as there are many situations in which healthcare providers have their hands full, such as when providing care in a hospital ward, there was a great need for a wearable speech translation device that could be used without being physically touched.
In order to expand the usability of multilingual speech translation, Fujitsu Laboratories has developed the world's first compact, wearable, hands-free speech translation device by developing technology to differentiate speakers using small omnidirectional microphones. This is possible through an ingenious modification of the shape of the sound channel, and by improving the accuracy of speech detection technology that is highly resistant to background noise. Use of this device is expected to reduce the burden on healthcare providers whose hands are often constrained by other tasks.
Fujitsu Laboratories will evaluate the effectiveness of these newly developed translation devices in healthcare situations as part of a multilingual speech translation clinical trial(1) being carried out jointly with Fujitsu Limited, the University of Tokyo Hospital, and NICT, with the new devices being deployed in November 2017.
Development Background
With the increase in the number of visitors to Japan in recent years, there has been demand for the commercialization of a multilingual speech translation system that helps to overcome communication problems. The Multilingual Speech Translation Technology Promotion Consortium(2) has been conducting a variety of R&D and carrying out trials in various fields on the basis of the "Promotion of Global Communications Plan: Research, Development, and Social Demonstration of Multilingual Speech Translation Technology - (I. Research & Development of Multilingual Speech Translation Technology) Basic Plan" from the Ministry of Internal Affairs and Communications.
In 2016, Fujitsu Laboratories developed hands-free technology that recognizes people's voices and the locations of speakers, and that automatically changes to the appropriate language without physically touching the device. That same year, it also worked with the University of Tokyo Hospital and NICT to conduct a field trial of multilingual speech translation in the medical field using stationary-type tablets. As a result, it learned that healthcare providers do not just speak with patients in set locations, such as reception desks and diagnostic rooms, but also in a variety of situations when providing care throughout a hospital ward, leading to significant demand for a wearable speech translation device that could be used without physical manipulation.
Issues
With the hands-free speech translation technology developed in 2016 to run on tablets, the system used an external directional microphone to identify the direction of the speaker. To create a wearable speech translation device, however, it was necessary to develop a miniature directional microphone.
In addition, because there is a great deal of background noise in healthcare situations, such as the sounds of air conditioners and diagnostic devices, there were issues with low accuracy in detecting speech due to the impact of background noise when the healthcare provider was far from the patient.
About the Newly Developed Technology
Now, Fujitsu Laboratories has developed the world's first wearable, hands-free speech translation device that can be used in a variety of situations, including healthcare environments (Figure 1, Figure 2). Features of the technology are as follows:
Figure 1: The newly developed wearable, hands-free speech translation device
1. Miniaturization through sound channel configuration utilizing sound diffraction and miniature omnidirectional microphones
Fujitsu Laboratories successfully miniaturized the devices through the use of miniaturized omnidirectional microphones and technology that enhances the directivity of sound in the target direction using an L-shaped sound channel, which dampens sound from directions other than the target direction. As shown in Figure 2, sounds from the direction of the healthcare provider are diffracted once, while sounds from other directions are diffracted twice. Because sound is dampened when it is diffracted, this can enhance the directionality of sounds from the direction of the healthcare provider.
2. Improved speech detection accuracy
Fujitsu Laboratories adopted a high-sensitivity microphone element for the patient's direction (outward-facing), increasing the recording levels for the patient's voice. In addition, it suppressed ambient noise, such as from air conditioners and diagnostic devices, through the use of noise suppression technology.
3. Structure and unit design for ease of use in healthcare situations
In developing this wearable, hands-free speech translation technology, Fujitsu Laboratories miniaturized and optimized the sound channel configuration, taking into consideration ease of use in healthcare situations, and using miniaturization and weight reduction techniques developed by Fujitsu Connected Technologies Limited in its development of smartphones and other mobile phones. Fujitsu Laboratories decided on a hanging name-badge form factor style that enables the healthcare provider to freely use both hands, with button icons, form and markings that enable intuitive operation, as well as a rounded shape to provide a pleasant and unobtrusive impression to both the healthcare provider and the patient.
Figure 2: Usage scenario for the wearable, hands-free speech translation device and relationship to directivity
Effects
With this newly developed technology, Fujitsu Laboratories achieved a speech detection accuracy of 95% in an environment with comparable noise levels to an examination room in a large hospital (about 60 decibels of noise) at a natural distance for a face-to-face conversation between a healthcare provider and a patient of about 80 cm. This newly developed translation device reduces the burden on healthcare providers when using speech translation, freeing up their hands during tasks that often require both hands, such as providing care in a ward.
Future Plans
Fujitsu Laboratories will be carrying out clinical trials in healthcare institutions across Japan, including the University of Tokyo Hospital, beginning in November 2017, using both this newly developed wearable, hands-free speech translation device and a speech translation system that supports accurate translations between Japanese and English or Chinese in healthcare situations, developed by NICT. In addition, based on the results of these clinical trials, the number of supported languages and the scope of usage will be expanded.
Going forward, Fujitsu Laboratories aims to expand speech translation systems using this technology to a variety of fields, such as in assisting guests in tourism and in public services from local governments, with the goal of commercialization in fiscal 2018.
[1] Multilingual speech translation clinical trial
Research Ethics Committee of the Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Ethics Review Number 10704-(4)
[2] Multilingual Speech Translation Technology Promotion Consortium
Established on October 26, 2015, with the goal of carrying out research and development over the five years from 2015 on multilingual speech translation technology that can enable communication without causing foreign visitors to Japan to feel the language barrier, with the goal of providing practical equipment by 2020.
About Fujitsu
Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Approximately 155,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE: 6702) reported consolidated revenues of 4.5 trillion yen (US$40 billion) for the fiscal year ended March 31, 2017.
About Fujitsu Laboratories
Founded in 1968 as a wholly owned subsidiary of Fujitsu Limited, Fujitsu Laboratories Ltd. is one of the premier research centers in the world. With a global network of laboratories in Japan, China, the United States and Europe, the organization conducts a wide range of basic and applied research in the areas of Next-generation Services, Computer Servers, Networks, Electronic Devices and Advanced Materials. For more information, please see: http://www.fujitsu.com/jp/group/labs/en/.
Suggested Items
Deca Announces Agreement with IBM to Bring High-Density Fan-Out Interposer Production to North America
05/20/2025 | Deca TechnologiesDeca Technologies announced the signing of an agreement with IBM to implement Deca’s M-Series™ and Adaptive Patterning® technologies in IBM’s advanced packaging facility in Bromont, Quebec.
Global PCB Connections: Rigid-flex and Flexible PCBs—The Backbone of Modern Electronics
05/20/2025 | Jerome Larez -- Column: Global PCB ConnectionsIn the past decade, flex and rigid-flex PCB technology has become the fastest-growing market segment. As an increasing number of PCB companies develop the capabilities to fabricate this technology, PCB designers are becoming comfortable incorporating these designs into their products.
Global PCB Market Forecast to Reach $86.5 Billion by 2029 with 5.9% Annual Growth
05/19/2025 | EINPresswire.comThe printed circuit board market size has witnessed steady growth in recent years and the trend is anticipated to continue. Increasing from $65.82 billion in 2024 to $68.75 billion in 2025, it showcases a compound annual growth rate CAGR of 4.5%.
Seoul Semiconductor, Seoul City Join Forces to Enhance Public Safety
05/19/2025 | BUSINESS WIRESeoul Semiconductor Co., Ltd.a leading global innovator of LED products and technology, announced that it has signed a “Standard Safety Design Agreement” with the Seoul Metropolitan Government to enhance citizen safety in tunnels and underpasses throughout the city.
Connection Wins Intel Partner of the Year Award for AI PC
05/16/2025 | BUSINESS WIREConnection, a leading information technology solutions provider to business, government, healthcare, and education markets, is pleased to announce that it has received Intel’s 2025 Partner of the Year award for AI PC. Connection earned this distinction for demonstrating exceptional technology innovation and collaboration in developing solutions and marketing strategies.