Bringing Superconducting Single-Photon Detectors in From the Cold
October 4, 2017 | University of GlasgowEstimated reading time: 2 minutes

A new form of compact cooling technology developed for space astronomy could pave the way for use of advanced superconducting detectors for better cancer treatments, driverless cars and practical quantum communications.
In a Letter published in the journal Superconductor Science and Technology, researchers from the University of Glasgow and the STFC Rutherford Appleton Laboratory describe how they have developed a supercooled detector platform capable of detecting single photons. This compact and robust platform has low enough power consumption to be used outside of a laboratory environment for the first time.
Their research builds on existing developments in extremely sensitive light sensors known as superconducting nanowire single photon detectors (SNSPDs). SNSPDs are capable of detecting individual light quanta – photons – even at infrared wavelengths. While SNSPDs have facilitated numerous significant advances in quantum science over the last decade, they need to be cooled to a just few degrees above absolute zero (−273.15 °C) in order to work effectively - a process which requires expensive and hazardous liquid helium, or a great deal of electrical power to achieve.
The research team from Glasgow and Rutherford Appleton labs have developed a more portable, less power-hungry platform for SNSPDs which opens up a wide range of new applications for the technology.
Nathan Gemmell, of the University of Glasgow’s School of Engineering, is the lead author of the Letter.
He said: “We’ve adapted technology initially developed for the European Space Agency’s Planck mission, which launched in 2009 and successfully surveyed cosmic background radiation in the microwave and infrared frequencies of the spectrum over four and a half years in space.
“We’ve taken a fibre-optic coupled superconducting detector supplied by the Dutch start-up Single Quantum BV and housed it in a miniaturised cooler capable of reaching temperatures of 4.2 Kelvin, or -268.95 °C, which runs from standard mains power.”
Professor Robert Hadfield, Professor of Photonics at the University of Glasgow’s School of Engineering, is the lead researcher on the project.
Professor Hadfield added: “Our Letter outlines how we’ve been able to use the SNSPD for infrared single-photon light detection and ranging, a form of distance measurement which could play a key role in the development of systems suitable for driverless cars in the future.
“We also discuss how we’ve been able to use the system to detect infrared photons at a wavelength of 1270 nanometres, the signature of a form of excited oxygen known as ‘singlet oxygen’, which plays a key role in many biological and physiological processes.
“In a cancer treatment called photodynamic therapy (PDT), the treatment drug exchanges energy with surrounding oxygen molecules on optical excitation, creating singlet oxygen radicals which kill tumour cells.
“A miniaturised cooling platform like ours would make SNSPD use in clinical PDT much more practical, potentially making cancer treatments more effective.”
Dr Cathy Foley of Commonwealth Scientific and Industrial Research Organisation (CSIRO), editor-in-chief of Superconductor Science and Technology, said: “This is a very exciting report and a genuine breakthrough. This work shows that advances in cryogenic engineering will enable superconducting quantum technologies to have decisive impact in a host of real-world applications.”
The Letter, titled ‘A miniaturized 4 K platform for superconducting infrared photon counting detectors’, is published in Superconductor Science and Technology.
The research was funded by the Engineering and Physical Sciences Research Council (EPSRC) through QuantIC, the UK quantum technology hub in quantum enhanced imaging and the European Research Council (ERC).
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Altair, Wichita State University’s NIAR Sign MoU to Accelerate Aerospace Innovation
09/16/2025 | AltairAltair, a global leader in computational intelligence, and Wichita State University’s (WSU) National Institute for Aviation Research (NIAR), one of the world’s leading aerospace research institutions, have signed a memorandum of understanding (MoU) to advance innovation across the aerospace and defense industries.
AI-Powered Wearables Transform How Consumers Interact with Everyday Technology
09/15/2025 | PR NewswireThe global demand for AI-driven, touchless wearable technologies is accelerating as consumers seek more natural, seamless and intuitive ways to interact with their devices. Traditional touch screens and voice assistants, while effective, are increasingly viewed as limiting in a world where multitasking, mobility and efficiency are key. As industries from consumer electronics to augmented reality and enterprise computing embrace the possibilities of gesture-based control, the market for neural interfaces is rapidly expanding
Hanwha Aerospace to Collaborate with BAE Systems on Advanced Anti-jamming GPS for Guided Missiles
09/15/2025 | HanwhaHanwha Aerospace has signed a contract with BAE Systems to integrate next-generation, anti-jamming Global Positioning System (GPS) technology into Hanwha Aerospace’s Deep Strike Capability precision-guided weapon system.
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.