-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueProduction Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Creating the Perfect Solder Joint
November 3, 2017 | Stephen Las Marias, I-Connect007Estimated reading time: 2 minutes

What are the characteristics of a good solder joint? Generally, from a visual standpoint, they should be smooth, bright, shiny, clean, and have a nice concave solder fillet. At least, these characteristics describe solder joints for through-hole components. What about for surface-mount devices? Or bottom terminated components? Moreover, how do you ensure that inside those joints, good intermetallic bonds are formed?
Since all solder joints aren’t created equal, the first step is to understand what is expected or required of that joint, according to Rick Short of Indium Corp., during my interview with him at the recent NEPCON South China trade exhibition in Shenzhen, China.
Solder joints play several different roles, and they represent several different opportunities to be a problem, a partial improvement, or a complete improvement. For example, there are solder joints that are necessary for physical strengths, such as holding components, like connectors. We often wiggle and yank our phone jacks—there’s a little bit of solder trying to hold all that together, and we keep doing it over the course of ownership of the device. So, those joints must be very robust with regard to physical strength. Other solder joints are merely there to conduct electricity. They don’t have much of a harsh life at all, and it is a relatively easy life for them. Other solder joints, meanwhile, are involved in very high heat dissipation demands. They must conduct electricity and heat, and they might also need to address physical strength issues. So, many different opportunities exist for solder joints to either cause you problems or contribute to the success of your finished goods.
Nobody, including myself, wants field failure. I often travel overseas for work, so I definitely don’t want the airplane I’m on to experience that "field failure." But going back to our topic on solder joints, I vividly recall that fatal plane crash a few years ago that was mainly caused by cracked solder joints in the subassembly unit that controls the rudder. The crash was tragic, but the cause of it is also the reality. I am not sure about the other technical details on the plane, but it had already logged 23,039 flight hours since its manufacture, and 13,610 cycles (an aircraft cycle means takeoff and landing).
Just imagine the many hours that these PCB assemblies have been subjected to harsh conditions—component breakdowns are inevitable. Which is why the reliability of PCB assemblies remains very critical.
In our recent survey on soldering, we identified many challenges to address during the soldering process to ensure good solder joints. These include solder paste selection, thermal issues and reflow profiles, voiding, and component size variations, to name a few.
To read the full version of this article, which appeared in the October 2017 issue of SMT Magazine, click here.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.
Indium to Showcase High-Reliability Solder and Flux-Cored Wire Solutions at SMTA International
10/09/2025 | Indium CorporationAs one of the leading materials providers in the electronics industry, Indium Corporation® will feature its innovative, high-reliability solder and flux-cored wire products at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
‘Create your Connections’ – Rehm at productronica 2025 in Munich
10/08/2025 | Rehm Thermal SystemsThe electronics industry is undergoing dynamic transformation: smart production lines, sustainability, artificial intelligence, and sensor technologies dominate current discussions.