-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueMoving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Creating the Perfect Solder Joint
November 3, 2017 | Stephen Las Marias, I-Connect007Estimated reading time: 2 minutes

What are the characteristics of a good solder joint? Generally, from a visual standpoint, they should be smooth, bright, shiny, clean, and have a nice concave solder fillet. At least, these characteristics describe solder joints for through-hole components. What about for surface-mount devices? Or bottom terminated components? Moreover, how do you ensure that inside those joints, good intermetallic bonds are formed?
Since all solder joints aren’t created equal, the first step is to understand what is expected or required of that joint, according to Rick Short of Indium Corp., during my interview with him at the recent NEPCON South China trade exhibition in Shenzhen, China.
Solder joints play several different roles, and they represent several different opportunities to be a problem, a partial improvement, or a complete improvement. For example, there are solder joints that are necessary for physical strengths, such as holding components, like connectors. We often wiggle and yank our phone jacks—there’s a little bit of solder trying to hold all that together, and we keep doing it over the course of ownership of the device. So, those joints must be very robust with regard to physical strength. Other solder joints are merely there to conduct electricity. They don’t have much of a harsh life at all, and it is a relatively easy life for them. Other solder joints, meanwhile, are involved in very high heat dissipation demands. They must conduct electricity and heat, and they might also need to address physical strength issues. So, many different opportunities exist for solder joints to either cause you problems or contribute to the success of your finished goods.
Nobody, including myself, wants field failure. I often travel overseas for work, so I definitely don’t want the airplane I’m on to experience that "field failure." But going back to our topic on solder joints, I vividly recall that fatal plane crash a few years ago that was mainly caused by cracked solder joints in the subassembly unit that controls the rudder. The crash was tragic, but the cause of it is also the reality. I am not sure about the other technical details on the plane, but it had already logged 23,039 flight hours since its manufacture, and 13,610 cycles (an aircraft cycle means takeoff and landing).
Just imagine the many hours that these PCB assemblies have been subjected to harsh conditions—component breakdowns are inevitable. Which is why the reliability of PCB assemblies remains very critical.
In our recent survey on soldering, we identified many challenges to address during the soldering process to ensure good solder joints. These include solder paste selection, thermal issues and reflow profiles, voiding, and component size variations, to name a few.
To read the full version of this article, which appeared in the October 2017 issue of SMT Magazine, click here.
Suggested Items
BEST Inc. Introduces StikNPeel Rework Stencil for Fast, Simple and Reliable Solder Paste Printing
06/02/2025 | BEST Inc.BEST Inc., a leader in electronic component rework services, training, and products is pleased to introduce StikNPeel™ rework stencils. This innovative product is designed for printing solder paste for placement of gull wing devices such as quad flat packs (QFPs) or bottom terminated components.
See TopLine’s Next Gen Braided Solder Column Technology at SPACE TECH EXPO 2025
05/28/2025 | TopLineAerospace and Defense applications in demanding environments have a solution now in TopLine’s Braided Solder Columns, which can withstand the rigors of deep space cold and cryogenic environments.
INEMI Interim Report: Interconnection Modeling and Simulation Results for Low-Temp Materials in First-Level Interconnect
05/30/2025 | iNEMIOne of the greatest challenges of integrating different types of silicon, memory, and other extended processing units (XPUs) in a single package is in attaching these various types of chips in a reliable way.
E-tronix Announces Upcoming Webinar with ELMOTEC: Optimizing Soldering Quality and Efficiency with Robotic Automation
05/30/2025 | E-tronixE-tronix, a Stromberg Company, is excited to host an informative webinar presented by Raphael Luchs, CEO of ELMOTEC, titled "Optimize Soldering Quality and Efficiency with Robotic Automation," taking place on Wednesday, June 4, 2025 at 12:00 PM CDT.
CE3S Launches EcoClaim Solutions to Simplify Recycling and Promote Sustainable Manufacturing
05/29/2025 | CE3SCumberland Electronics Strategic Supply Solutions (CE3S), your strategic sourcing, professional solutions and distribution partner, is proud to announce the official launch of EcoClaim™ Solutions, a comprehensive recycling program designed to make responsible disposal of materials easier, more efficient, and more accessible for manufacturers.