Quantifying Quanta
November 22, 2017 | University of TokyoEstimated reading time: 1 minute

A research group at the University of Tokyo and its collaborators have demonstrated for the first time that magnons—the smallest units of energy, quanta, of the collective spin motions in a magnet—could be observed as discrete units.
Illustration of quantum sensor based on hybrid quantum technology
The number of propagating microwave photons is difficult to observe directly. In the current study, researchers nevertheless succeeded in measuring the microwave-photon-number distribution by using a superconducting qubit device.
Until now, a method for quantifying the collective spin motions in a magnet (ferromagnetic material) at the single-quantum level did not exist. The research group led by Professor Yasunobu Nakamura and Assistant Professor Yutaka Tabuchi at the Research Center for Advanced Science and Technology, the University of Tokyo, measured the number distribution of magnons excited in a ferromagnetic single-crystalline sphere by using a quantum bit—the minimum unit of quantum information—based on a superconducting circuit, called a superconducting quantum bit (qubit), as a highly sensitive detector. Superconducting qubits are widely recognized as an elementary device for future quantum computing. By using a similar technique, a group led by Nakamura and graduate student Shingo Kono at the Department of Applied Physics, Graduate School of Engineering, the University of Tokyo, measured the quantum-mechanical distribution of microwave photons in a transmission line.
The current outcome points to superconducting qubit devices becoming a new type of detector for quantum-mechanical behaviors of matter, through the hybridization of quantum technologies combining superconducting qubits with magnons in a quantum-mechanical state. The hybrid quantum systems created by merging superconducting quantum bits and other physical systems are likely to find applications in the development of new sensor technologies and lead to the adoption of advanced quantum information technologies, including quantum computers, quantum communications, and quantum cryptography, in the future.
"The technique we established opens up the plausibility of a new quantum-sensing application of hybrid quantum systems using a quantum bit based on a superconducting circuit," says Nakamura. He continues, "We also measured the number distribution of propagating microwave photons with a similar technique." Tabuchi adds, "We hope to accelerate our efforts in the research and development of quantum computing technology as well to further develop hybrid quantum technology combining various physical systems and superconducting quantum-bit devices."
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Altair, Wichita State University’s NIAR Sign MoU to Accelerate Aerospace Innovation
09/16/2025 | AltairAltair, a global leader in computational intelligence, and Wichita State University’s (WSU) National Institute for Aviation Research (NIAR), one of the world’s leading aerospace research institutions, have signed a memorandum of understanding (MoU) to advance innovation across the aerospace and defense industries.
AI-Powered Wearables Transform How Consumers Interact with Everyday Technology
09/15/2025 | PR NewswireThe global demand for AI-driven, touchless wearable technologies is accelerating as consumers seek more natural, seamless and intuitive ways to interact with their devices. Traditional touch screens and voice assistants, while effective, are increasingly viewed as limiting in a world where multitasking, mobility and efficiency are key. As industries from consumer electronics to augmented reality and enterprise computing embrace the possibilities of gesture-based control, the market for neural interfaces is rapidly expanding
Hanwha Aerospace to Collaborate with BAE Systems on Advanced Anti-jamming GPS for Guided Missiles
09/15/2025 | HanwhaHanwha Aerospace has signed a contract with BAE Systems to integrate next-generation, anti-jamming Global Positioning System (GPS) technology into Hanwha Aerospace’s Deep Strike Capability precision-guided weapon system.
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.