-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSupply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
Moving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Via-in-Pad Plated over Design Considerations to Mitigate Solder Separation Failure
November 29, 2017 | S.Y. Teng, P. Peretta and P. Ton, Cisco Systems Inc.; and V. Kome-ong and W. Kamanee, Celestica ThailandEstimated reading time: 6 minutes
Since the separated solder ball shape is rounded near the open or partially open interface, this indicates that the solder joint underwent reflow subsequent to the separation. Furthermore, since the separation is between the bulk solder and the IMC and does not reflect a brittle fracture, it is suspected that the separation occurred after the solder has softened and is nearly molten. Figure 6 illustrates a brittle solder joint failure in which the fracture occurs within the IMC itself and exhibits more of a flat surface indicative of crack propagation.
Figure 5: Partial solder separation.
Failure Mechanism
There seem to be two primary effects that are occurring which contribute to this failure mechanism. First, there is a CTE mismatch between the VIPPO structure and the non-VIPPO, or deep-backdrill VIPPO, structure, that results in a greater expansion of the PCB beneath the non-VIPPO BGA pad, or the deep-backdrill VIPPO pad, as compared with the VIPPO BGA pad. Secondly, the higher thermal conductivity of the VIPPO structure as compared with the non-VIPPO, or deep-backdrill VIPPO structure, allows the VIPPO solder joints to reach liquidus before the adjacent solder joints having a non-VIPPO, or deep-backdrill VIPPO pad. Therefore, during a secondary reflow process, when the adjacent non-VIPPO solder joints are still solid, tensile stresses are induced in the VIPPO solder joints as the adjacent non-VIPPO solder joints are pushed up due to the greater out-of-plane PCB expansion beneath those pads.
Subsequently, when the VIPPO solder joints become molten, these high stresses are relieved as the bulk solder “tears” or separates from the IMC. This solder separation can occur at either the package interface or the PCB interface of the solder joint, depending on whichever is the weaker interface. Since the PCB pad design is generally a non-soldermask-defined pad (NSMD) and the BGA package typically uses soldermask-defined pads (SMD), the separation will more likely occur at the package interface.
Figure 6: Complete solder separation.
Alternatively, a 100% VIPPO BGA footprint without deep backdrill does not introduce the additional stresses that are exhibited with the CTE mismatch between adjacent VIPPO and non-VIPPO pad designs. Additionally, a 100% VIPPO BGA footprint without deep backdrill does not create the high thermal gradients between adjacent solder joints that the mixed VIPPO/non-VIPPO BGA footprints achieve. Therefore, this type of failure mode has not been identified with 100% VIPPO BGA footprints with no deep backdrill.
Evaluation Plan
In order to better understand the influence of various PCB and packaging design parameters on this failure mode, three different test vehicles have been designed to assess the following:
1. Influence of drill hole size (DHS) for the VIPPO structures: 9.8 mils vs. 7.9 mils DHS
2. Influence of BGA package body size and BGA pitch
3. Influence of varying backdrill (BD) depths and BGA package body size
Each test vehicle is assembled through a primary and secondary SMT attach process, followed by inspection and physical analysis to validate the solder joint integrity after each reflow. The printed circuit assembly equipment, process parameters, tooling (e.g., stencil design and technology), assembly materials (e.g., solder paste) and inspection equipment and methodologies utilized for these builds are consistent with Cisco’s standard production processes in order to minimize the number of variables introduced in this study.
To read the full version of this article, which appeared in the November 2017 issue of SMT Magazine, click here.
Page 2 of 2Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Indium Promotes Huang to Senior Manager, Marketing Communications
08/28/2025 | Indium CorporationWith its commitment to innovation and growth through employee development, Indium Corporation announces the promotion of Jingya Huang to Senior Manager, Marketing Communications, to continue to lead the company’s branding and promotional efforts.
Rehm Academy Expands Its Training Program
08/28/2025 | Rehm Thermal SystemsThe demands on modern industrial companies and employees continue to rise, and therefore, the topic of further education is becoming increasingly important today.
MacDermid Alpha Awarded for Innovation: Driving Process Optimization and Efficiency with Major Indian EMS Provider
08/28/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronics Solutions, a leading global supplier of integrated materials for the electronics industry, is recognized by one of India’s top EMS providers, Syrma SGS, with an award for innovation that advanced process optimization, enhanced operational efficiency, and yield gains.
Integrated Solutions for Board-level Reliability: A Smarter Path Forward
08/27/2025 | Alan Gardner, MacDermid Alpha Electronics SolutionsIn today’s electronics manufacturing landscape, reliability is no longer just a benchmark but a business imperative. As industries such as automotive, aerospace, and high-performance computing (HPC) push the boundaries of innovation, the demand for dependable board-level performance under extreme conditions has never been greater.
ZESTRON Expands Capabilities with Addition of the EPS by i-Tech AG 75 Pallet Cleaning System
08/26/2025 | ZESTRONZESTRON, the global leader in high-precision cleaning solutions and services, is excited to announce the addition of a new capability in its Technical Center in Manassas, VA: