-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Selecting X-Ray Inspection Equipment
January 24, 2018 | Russell Poppe, JJS ManufacturingEstimated reading time: 6 minutes
The D, of course, stands for dimensions. There are three kinds of systems:
• 2D, which provides a straight top-down view
• 2.5D, which allows top down and tilted or angled views
• 3D, which is a three-dimensional re-construction of the assembly. This might use such techniques as tomography, laminography or (for the full 3D effect) computed tomography, or CT.
Figure 2: In this example, voids in the solder are highlighted in green.
Of course, the more you get to see, the slower the inspection is. Complex CT scans for example can take hours to make. If the aim is to look at missing solder balls under a BGA for example, or shorts between them, then 2D can be fine. However, tilting can help get a better view if there are components obscuring the area of interest. 3D might be used for detailed quality investigations.
3. Ease of use
Some systems allow a degree of automated inspection, for example by programming sequences of inspections with pass/fail criteria. This of course makes repeatable inspection and operation very easy, and allows an in-line process if required. Setting it up though, or performing ad-hoc inspections, does require some skill.
While modern X-ray systems are easy to use, the inspector does need to understand what all the settings do (e.g., the voltage and contrast settings we mentioned before) and be able to interpret what they are seeing, which does require a reasonable knowledge of PCB assembly. There can be features that make image interpretation a bit easier, for example, by applying color.
4. Maintenance
It is worth remembering that the Health & Safety Executive (HSE) must be notified before using X-ray equipment. Obligations may also exist around creating rules or procedures for use, and engaging radiation protection supervisors and advisors. The equipment supplier should be able to provide advice, and it is a good idea to have them perform an (at least) annual health check on the system. It is also worth mentioning that there are different types of X-ray tube. ‘Open tube’ types are relatively quick and inexpensive to replace—perhaps a few pounds and a couple of hours—but need doing so after every 200-300 hours or so of use. ‘Closed tube’ types can last for many years but are much more expensive, maybe thousands of pounds. So perhaps the best choice depends on how much you will use the system.
The X-ray detectors tend to be standard or high-definition flat panels. The X-rays will cause these to degrade over time, typically around 20% after 10 years. While still usable, replacement after eight to 12 years could be advisable.
It is also worth finding out the common failure modes on systems, as while the component parts are similar, they can be assembled in different ways. For example, power supplies, connectors or cables can need replacing in time. Hopefully, this article has helped you understand some of the areas to focus on when looking to invest in X-ray inspection equipment.
Page 2 of 2Suggested Items
Advancing Photonic Soldering
12/11/2024 | Nolan Johnson, SMT007 MagazineStan Farnsworth, director of customer satisfaction at PulseForge, discusses the advancements in photonic soldering that highlight its energy efficiency and versatility. Over the past two years, the company has refined its applications for flexible substrates and energy reduction, finding that photonic soldering allows the processing of materials that typically aren’t thermally compatible and offers significant energy savings compared to traditional methods.
Indium Introduces New ROL0 and Halogen-free Flux-cored Wire
12/11/2024 | Indium CorporationIndium Corporation announced the global availability of CW-807RS, a new high-reliability, halide- and halogen-free flux-cored wire that improves wetting speeds and cycle times for electronics assembly and robot soldering applications.
SolderKing Celebrates a Year of Expansion, Innovation, and Sustainability Achievements
12/09/2024 | SolderKing Assembly Materials Ltd,SolderKing Assembly Materials Ltd, a leading UK-based manufacturer of soldering materials and consumables, has wrapped up 2024 with a series of milestones that reflect its ongoing growth and commitment to innovation.
ViTrox Expands Midwest Reach with ASC International as New Sales Channel Partner
12/09/2024 | SMTAViTrox Americas Inc. is pleased to announce ASC International as its new Sales Channel Partner and Manufacturers’ Representative for Minnesota, North Dakota and South Dakota.
ASMPT: Innovative Bonding for Power Electronics
12/09/2024 | ASMPTASMPT presents with its SilverSAM™ SilverSAM machine a highlight for makers of modern power electronics: an innovative and versatile silver sintering machine that meets the great demands on bonding, which is particularly critical in the field of electromobility. SilverSAM sets new standards in interconnect technology for power electronics, particularly in the rapidly growing electric vehicle market.