Quantum 'Hack' to Unleash Computing Power
February 2, 2018 | University of SydneyEstimated reading time: 1 minute
Physicists at the University of Sydney have found a 'quantum hack' that should allow for enormous efficiency gains in quantum computing technologies.
As scientists at IBM, Google, Microsoft and universities across the world seek to scale-up quantum technology to make a practical quantum computer, finding ways to do computations within an acceptable error threshold is a big technological problem.
The building blocks of quantum machines - quantum bits, or qubits - are prone to interference from their surrounding environments, leading them to decohere and lose their quantum properties. Allowing for this through error correction is vital to the successful scale-up of quantum technologies.
The theoretical breakthrough from the team of David Tuckett, Professor Stephen Bartlett and Associate Professor Steven Flammia allows for a 400 percent gain in the amount of interference noise a quantum computing system can theoretically sustain while retaining its fidelity.
"This is achieved by tailoring our quantum decoder to match the properties of the noise experienced by the qubits," said Associate Professor Flammia.
"In that sense, we are 'hacking' the generally accepted coding for error correction," Professor Bartlett said.
The research is published this week in the top-tier journal Physical Review Letters. It forms part of Mr Tuckett's work as a PhD candidate at the University.
At present the rule-of-thumb threshold for fidelity in a qubit architecture is about 1 percent. This means at least 99 percent of a system's qubits need to retain information and coherence for relevant periods of time in order to do any useful computations.
This real-world threshold of 1 percent comes from a theoretical approach where ideal hardware should allow for 10.9 percent error threshold. The drop in tolerance comes from 'noise' in using real-world machines.
Assuming ideal hardware, the work of the Sydney quantum team, which is based at the University of Sydney Nano Institute, has an error correction threshold of up to 43.7% - a fourfold improvement on the current theoretical basis for error correction.
This means fewer physical qubits could be required for a single quantum logic gate - or basic quantum circuit - that can perform a useful calculation.
This new approach should be applicable in any quantum system - whether the qubits rely on superconductors, trapped ions, semiconductors, or topological structures (should they need them).
Experimental scientists now need to apply this 'quantum hack' to real-world systems to see how it flows through using 'noisy' hardware.
Suggested Items
North American PCB Industry Shipments Down 3.1% in March
04/28/2025 | IPCIPC announced the March 2025 findings from its North American Printed Circuit Board (PCB) Statistical Program. The book-to-bill ratio stands at 1.24.
Mycronic Posts Interim Report January-March 2025
04/25/2025 | MycronicMycronic announced its interim report for the period of January to March 2025, revealing a strong performance in the first quarter. The company reported significant increases in order intake and net sales, alongside a healthy EBIT margin.
Infineon Bolsters Global Lead in Automotive Semiconductors with Number One Position in Microcontrollers Driving this Success
04/07/2025 | InfineonInfineon Technologies AG bolsters its global and regional market leadership positions in automotive semiconductors, including its very strong position in microcontrollers.
Connected Commercial Drone Market to Reach $37.3 Billion Worldwide by 2029
04/04/2025 | Berg InsightBerg Insight, a leading IoT market research provider, today released a new report covering connected commercial drones used for industrial and governmental purposes.
IPC Releases March 2025 Global Sentiment of the Electronics Manufacturing Supply Chain Report
04/02/2025 | IPCThis past March, electronics industry demand strengthened to its highest level in nearly a year, indicating strong expansion in customer and manufacturing activity according to IPC’s [IPC-Current-Sentimen-Global-EMSChain0525.pdf] March Sentiment of the Global Electronics Manufacturing Supply Chain Report.