-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Institute of Circuit Technology Meriden Seminar, 2018
March 21, 2018 | Pete Starkey, I-Connect007Estimated reading time: 8 minutes
Andre Bodegom, managing director of Adeon Technologies, discussed new developments in automated optical inspection (AOI), with particular reference to traceability. Commenting that the technology gap between IC substrates and PCBs was progressively narrowing, he listed the challenges to the developers of today’s AOI systems: maintaining design-embedded intelligence and key feature information, automatically attaching specific inspection parameters, and handling the data processing associated with high-mix quick-turnaround work, whilst maximising equipment utilisation by combining applications, and communicating inspection, measurement and traceability information to the outside world.
With the aid of a series of examples and screen-shots, Bodegom explained the concept of “parameterised” optical inspection, beginning with the software capability to read the original CAD data from any source and apply smart logic to filtering and zoning the attributes, identifying different materials and technology levels per layer, predicting magnification levels and automatic adjustment of greyscale and illumination with respect to the variety of track-widths, pad types and features, and identifying types of defects and their impact, enabling a straightforward and user-friendly error-free set-up for the operator.
Industry-leading equipment was capable of automatically identifying the particular layer of a particular job by barcode or QR code, and could set up, calibrate and register on-the-fly, with full automation an option, and scan and report defects according to pre-set technology levels and defect sizes, with on-line or off-line verification. Add-on metrology options could enable accurate dimensional measurement as well as height measurement and 3D profiling.
All results from inspection and verification could be collated in a central database, integrated into the factory IT system with open-platform logic, and accessed via any web browser on the same network, with the facility to maintain complete traceability and to let the customer generate any defect classification report he might need.
Graham Naisbitt, managing director of Gen3 Systems Ltd, presented a new approach to the ionic contamination testing of electronic circuit boards and assemblies. He discussed the limitations of the traditional method measurement of ionisable surface contaminants by resistivity of solvent extract (ROSE), which had originated back in the 1970s and is documented in IPC-TM-650, method 2.3.25. Although the technique had originally been intended for use as a process tool, it had been widely adopted as an acceptance test for cleanliness, in military and commercial standards. The requirement was to achieve better than the ionic equivalent of 1.56 micrograms of sodium chloride per square centimetre of extracted surface.
Naisbitt commented that the 1.56 micrograms limit was arbitrary, and did not correlate with environmental field reliability, especially considering the wide range of complexity of assemblies, the variety of components, feature sizes, number of solder joints, flux types and materials. Moreover, the test did not detect non-ionic contaminants which might contribute to reliability issues, and the conditions of test could extract ionic species from deeper within the material than the surface, which in real-life would never appear as free ionic material or affect reliability but could be interpreted as false defects.
Of more recent times, these limitations had been acknowledged and there had been a desire to change the approach to contamination testing, with the aim to use the dissolvable ionic material as a process indicator. A joint exercise by Robert Bosch and Gen3 Systems had demonstrated the validity of the process monitoring approach, and the consistency of measurement had been validated statistically by a gauge repeatability and reproducibility analysis across a number of sites world-wide. Sufficient flow rate, CO2 compensation and sensitive conductivity measurement had been shown to be necessary to achieve consistent performance. This test was of short duration and run at room temperature and was known by the acronym PICT (process ionic contamination testing). Naisbitt described in detail the work that had been done to optimise the PICT test process, and to compare it with the equivalent ROSE procedure.
The IPC ROSE working group had produced a white paper recommending that the technique should no longer be considered a cleanliness method but rather as a process indicator, and this recommendation would be included in Revision H of IPC-J-STD 001, classing PICT as a process control method. Naisbitt was leading the UK team working on the development of IEC 61189-5-504, which would similarly address previous difficulties and shift the emphasis from cleanliness assessment to process indicator.
Professor Andy Cobley wrapped up the proceedings, thanking participants, and the evening concluded with the customary convivial networking session.
Page 2 of 2Suggested Items
ViTrox Marks 25 Years of Innovation with Cutting-Edge Solutions at NEPCON China 2025 in Shanghai
04/18/2025 | ViTrox TechnologiesViTrox, which aims to be the World’s Most Trusted Technology Company, is proud to announce its participation in NEPCON China 2025, taking place from April 22–24, 2025, at Booth #1E45, Shanghai World Expo Exhibition & Convention Centre (SWEECC).
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.
KOKI Announces Upcoming Webinar on Solder Voiding – Causes and Remedies
04/16/2025 | KOKIKOKI, a global leader in advanced soldering materials and process optimization services, is pleased to announce its upcoming webinar, “Solder Voiding—Causes and Remedies,” which will take place on Tuesday, April 22, 2025, at 12:00 PM CDT. Jerome McIntyre, Regional Sales & Applications Engineer at KOKI Americas, will present this live session.
Real Time with... IPC APEX EXPO 2025: Transition Automation Focusing on Security Coatings and Squeegee Technology
04/16/2025 | Real Time with...IPC APEX EXPOMark Curtin, President of Transition Automation, gives an update on recent innovations at his company. He highlights a record sales month and their new focus on security coatings to fight counterfeiting. Mark explains the engineering behind their durable squeegees, the importance of maintenance, and the value of considering overall costs over just price.
Indium to Feature Materials Solutions Powering Sustainability at PCIM Europe
04/15/2025 | Indium CorporationIndium Corporation specializes in power device packaging, offering a portfolio of advanced material solutions encompassing the entire assembly, including die-attach, top-side die interconnect, substrate-attach, package-attach, and PCB assembly.