Very Thin Film Could Help Manage Heat Flow in Future Devices
March 27, 2018 | Purdue UniversityEstimated reading time: 1 minute
Purdue University researchers have demonstrated the ability of a thin film to conduct heat on just its surfaces, identifying a potential solution to overheating in electronic devices such as phones and computers.
“When you try to make an electronic device, the heat dissipation is always a problem,” said Xianfan Xu, Purdue’s James J. and Carol L. Shuttleworth Professor of Mechanical Engineering. “So we are trying to provide an understanding of how heat can be dissipated in these future devices.”
This thin film material is a topological insulator, which supports the flow of electrons on its surface but not in its interior. No study had yet tested whether the same were true for heat, until confirmed by research published on Jan. 23 in ACS Nano. Past research has speculated that topological insulators could be useful for the development of spintronic devices, which encode information through the spins of electrons as opposed to electrical charge in today’s electronics.
The researchers found that the thinner the film is, the higher the heat conductivity. They also discovered that the ratio of thermal conductivity to electrical conductivity at the surface of the topological insulator materials can be more than 10 times higher than the Sommerfeld value, which is the value known for most metals and semiconductors determined by the Weidemann-Franz law. By conducting heat on just its surfaces rather than across the entire film, this material could prevent parts of a device from heating up or redirect heat.
Now, having identified this characteristic of heat transfer in topological insulators, the next step is to figure out how to use them for manipulating heat flow.
“There are not many ways to control heat. It’s not electricity, where you can turn it on and off,” Xu said. “But now there might be a chance to do that.”
The work is a collaborative effort among the research groups led by Xu, Yong Chen, a professor in Purdue’s Department of Physics and Astronomy, and Jesse Maassen, a physics professor at Dalhousie University in Canada.
Suggested Items
North American EMS Industry Up 10.6 Percent in November
01/02/2025 | IPCIPC announced today the November 2024 findings from its North American Electronics Manufacturing Services (EMS) Statistical Program. The book-to-bill ratio stands at 1.18.
Happy New Year From I-Connect007
01/01/2025 | Nolan Johnson, I-Connect007As I-Connect007 observes the New Year’s Day holiday, we also wish you and yours a prosperous new year. We will be back covering the news of the industry tomorrow, January 2, 2025, according to the Gregorian calendar.
Solar Powered Aircraft Achieves New Stratospheric Success
12/26/2024 | BAE SystemsA British-led team of engineers has taken a leap forward in the race to harness the stratosphere for earth observation and communications, completing a new series of test flights of BAE Systems’ High Altitude Pseudo Satellite (HAPS) Uncrewed Aerial System (UAS), PHASA-35®, in quick succession.
Murata to Acquire Sensoride Corporation
12/25/2024 | MurataMurata Manufacturing Co., Ltd. announces that Murata Electronics North America, Inc., a subsidiary of Murata, has entered into an agreement to acquire Sensoride Corporation (hereinafter referred to as 'Sensoride') on December 20, 2024, U.S. time.
Successful Pre-acceptance of TSK Schill GmbH Production Line for Moulded Etched Parts
12/16/2024 | TSK Schill GmbHThe specialist for horizontal wet systems for the production of printed circuit boards, chemical milling and moulded etched parts, TSK Schill GmbH from Gäufelden-Nebringen, is installing new production systems at one of the leading manufacturers of precision metal parts.