Bayreuth Researchers Improve Heat Insulation Using Deliberate Chaos
April 9, 2018 | University of BayreuthEstimated reading time: 2 minutes

Powder is extremely well-suited for thermal insulation when there is a jumble of different sized nanoparticles in it. This was discovered by a research group at the University of Bayreuth led by Prof. Dr. Markus Retsch. The scientists were able to determine how the thermal conductivity of powder is influenced by order and chaos in its constituent parts. They have published their findings in the journal Advanced Materials.
Image caption: A three-dimensional simulation of the particle packing. Left: ordered colloidal crystals in a strictly regular structure. Right: by mixing in larger particles (9 percent by volume; L = large), the order is destroyed. Illustrations: Markus Retsch.
The starting point of the research was phototonic crystals that occur naturally in various species of insects. For example, they are responsible for the colourful, glittering appearance of butterflies’ wings. Such crystals are easy to replicate in the laboratory using polymer nanoparticles. They possess a fine, regular, and stable structure. The effect of this well-ordered structure is that it becomes difficult for heat to flow through the crystals. Thermal conductivity is low.
The researchers in Bayreuth have now found out that materials can be produced from such nanoparticles which exhibit a thermal conductivity that is even much lower. These materials are mixtures in powder form: crystalline order is thus replaced with chaos, and the pleasant interplay of colours also ceases. While each particle in the interior of photonic crystals is surrounded by exactly twelve particles in the direct vicinity, the number of directly neighbouring particles in the mixture is inconsistent throughout. Consequently, heat must take circuitous routes, making it all the more difficult to permeate the mixture. Flowing from the warm side to the cold side in a chaotic structure is not as easy for the heat as it is in well-ordered crystals.
To completely clarify these relationships, Prof. Dr. Markus Retsch and his team used a combination of laboratory experiments and computer simulations. This allowed them to examine in detail how the composition of the particle mixture affects the flow of heat. The highest insulation effect is reached by mixing a very large number of small particles with fewer large particles. In addition to the mixing ratio, the difference in size between the two types of particles also plays a crucial role.
“Making reproducible chaos and describing it via simulations is not as easy as it sounds,” explained Prof. Retsch about the challenges of this study. “It was only possible to compare our experimental results with computer simulations because we mixed nanoparticles whose behaviour we can control very well,” he said. In this way, the researchers at the University of Bayreuth were able to gain detailed insights into heat distribution in disordered materials.
These findings are highly relevant to many applications, especially in the field of thermal insulation. For example, they can help to improve the thermal insulation performance of bulk powders. However, they also provide valuable clues for technical applications which, conversely, rely on quick and highly controllable heat dissipation. This is the case, for instance, in the optimization of industrial sintering processes in which tiny particles of powder are melted. The key is to precisely regulate the temperature at the melting points, which is possible thanks to improved dissipation.
Suggested Items
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.
Altair, JetZero Join Forces to Propel Aerospace Innovation
03/26/2025 | AltairAltair, a global leader in computational intelligence, and JetZero, a company dedicated to developing the world’s first commercial blended wing airplane, have joined forces to drive next-generation aerospace innovation.
RTX's Raytheon Receives Follow-on Contract from U.S. Army for Advanced Defense Analysis Solution
03/25/2025 | RTXRaytheon, an RTX business, has been awarded a follow-on contract from the U.S. Army Futures Command, Futures and Concepts Center to continue to utilize its Rapid Campaign Analysis and Demonstration Environment, or RCADE, modeling and simulation capability.
Ansys to Integrate NVIDIA Omniverse
03/20/2025 | ANSYSAnsys announced it will offer advanced data processing and visualization capabilities, powered by integrations with NVIDIA Omniverse within select products, starting with Fluent and AVxcelerate Sensors.