Cell Membrane Inspires New Ultrathin Electronic Film
May 3, 2018 | Tokyo Institute of TechnologyEstimated reading time: 3 minutes
Japanese researchers have developed a new method to build large areas of semiconductive material that is just two molecules thick and a total of 4.4 nanometers tall. The films function as thin film transistors, and have potential future applications in flexible electronics or chemical detectors. These thin film transistors are the first example of semiconductive single molecular bilayers created with liquid solution processing, a standard manufacturing process that minimizes costs.
Top surface view of 3D computer model (left) and Atomic Force Microscopy image (right) of the new film made by University of Tokyo scientists. The well-organized structure of the molecules is visible in both the 3D computer model and microscope image as a herringbone or cross-hair pattern. The color differences in the microscopy image are a result of the different lengths of the molecules' tails; the length differences cause the geometric frustration that prevents layers from stacking.
"We want to give electronic devices the features of real cell membranes: flexible, strong, sensitive, and super thin. We found a novel way to design semiconductive single molecular bilayers that allows us to manufacture large surface areas, up to 100 square centimeters (39 square inches). They can function as high performance thin film transistors and could have many applications in the future," said Assistant Professor Shunto Arai, the first author on the recent research publication.
Professor Tatsuo Hasegawa of the University of Tokyo Department of Applied Physics led the team that built the new film. The breakthrough responsible for their success is a concept called geometric frustration, which uses a molecular shape that makes it difficult for molecules to settle in multiple layers on top of each other.
The molecules are aligned head-to-head (yellow portions) with their tails pointing in opposite directions (gray portions) so the molecules form a vertical line. The different tail lengths prevent additional layers of molecules from stacking on top. Thin film transistors made of single molecular bilayers will have better device performance than films that are irregular or greater thickness.
The film is transparent, but the forces of attraction and repulsion between the molecules create an organized, repeated herringbone pattern when the film is viewed from above through a microscope. The overall molecular structure of the bilayer is highly stable. Researchers believe it should be possible to build the same structure out of different molecules with different functionalities.
The individual molecules used in the current film are divided into two regions: a head and a tail. The head of one molecule stacks on top of another, with their tails pointing in opposite directions so the molecules form a vertical line. These two molecules are surrounded by identical head-to-head pairs of molecules, which all together form a sandwich called a molecular bilayer.
Researchers discovered they could prevent additional bilayers from stacking on top by building the bilayer out of molecules with different length tails, so the surfaces of the bilayer are rough and naturally discourage stacking. This effect of different lengths is referred to as geometric frustration.
Standard methods of creating semiconductive molecular bilayers cannot control the thickness without causing cracks or an irregular surface. The geometric frustration of different length tails has allowed researchers to avoid these pitfalls and build a 10cm by 10cm (3.9 inches by 3.9 inches) square of their film using the common industrial method of solution processing.
Liquid molecules are spread by a blade over the production surface at room temperature and standard air pressure in a technique called solution processing. As the liquid dries, the inter-molecular forces cause the molecules to automatically arrange themselves into geometrically frustrated single bilayers just 4.4 nanometers thick.
The semiconductive properties of the bilayer may give the films applications in flexible electronics or chemical detection.
Semiconductors are able to switch between states that allow electricity to flow (conductors) and states that prevent electricity from flowing (insulators). This on-off switching is what allows transistors to quickly change displayed images, such as a picture on an LCD screen. The single molecular bilayer created by the UTokyo team is much faster than amorphous silicon thin film transistors, a common type of semiconductor currently used in electronics.
The team will continue to investigate the properties of geometrically frustrated single molecular bilayers and potential applications for chemical detection. Collaborators based at the National Institute of Advanced Industrial Science and Technology, the Nippon Kayaku Company Limited, Condensed Matter Research Center, and High Energy Accelerator Research Organization also contributed to the research.
Suggested Items
The World's Smallest PPG Sensor Head
04/04/2025 | BUSINESS WIRESCIVAX Corporation and TSLC Corporation, a SemiLEDs Corporation wholly owned company announced that SCIVAX+TSLC have developed the world's smallest PPG (PhotoPlethysmoGraphy)* sensor head, which will be presented at the display related technology exhibition ”Touch Taiwan” to be held in Taipei, Taiwan from April 16 to 18, 2025. The samples of the PPG sensor head for evaluation will begin in April 2025.
ASMPT Strengthens its Global Footprint
03/21/2025 | ASMPTASMPT, the global market and technology leader for hardware and software solutions in the semiconductor and electronics industries, continues to drive the growth of its semiconductor solutions in strategically important markets.
ASMPT: New Stationary Camera for SIPLACE Placement Machines
03/13/2025 | ASMPTMarket and technology leader ASMPT is offering a new stationary camera available for its placement machines equipped with SIPLACE placement heads CPP and TWIN. It delivers significantly faster processing speeds as well as more component flexibility – from highly integrated ball grid arrays (BGAs) to large-format odd shape components (OSCs).
TEXMAC/Takaya Appoints Arrowhead as New Rep in Arizona
02/14/2025 | TEXMACTEXMAC, the exclusive authorized distributor of Takaya flying probe test systems in North and South America, announces the appointment of Arrowhead Technical Sales & Marketing, LLC and Brian L. Crisp to represent the company’s flying probe test systems and technology in the state of Arizona. The company is based in Lake Havasu City, AZ, and can be reached at Tel. (909) 273-7111, e-mail brian@arrowheadtechnicalsales.com.
PC Market Closed out 2024 with Slight Growth and Mixed Views on What 2025 Will Bring
01/10/2025 | IDCPC shipments during the fourth quarter of 2024 grew 1.8% from the prior year with global volumes reaching 68.9 million shipments, according to preliminary results from the International Data Corporation (IDC) Worldwide Quarterly Personal Computing Device Tracker.