Skoltech-led Group of Scientists Create Vanadium Flow Battery Model
July 5, 2018 | SkoltechEstimated reading time: 2 minutes
A group of scientists from the Skolkovo Institute of Science and Technology (Skoltech), Lomonosov Moscow State University (MSU) and the Moscow Institute of Physics and Technology (MIPT) led by Skoltech Professor Aldo Bischi has developed a mathematical model of the electrochemical cell of the vanadium flow battery, which describes the battery’s dynamic behavior, including the cross-over, i.e. the flow of vanadium ions through the cell membrane. The results of the study were published in the journal Applied Energy.
The vanadium flow battery is seen as one of the most advanced energy storage devices from the perspective of its integration with renewable energy sources. The battery’s operating principle consists in converting electrical energy into the energy of chemical reactions between vanadium salts. The flow battery differs from classical batteries in that it uses both the electrochemical cell and the liquid electrolyte stored in separate tanks and flowing through the cell when the battery is in operation. Thus the battery’s capacity and power can be scaled independently, which gives the designers more flexibility in creating real power installations and enables them to design new high-power and high-capacity storage devices. Another advantage of the vanadium flow batteries is that they have a much longer life compared to their conventional counterparts. Currently, vanadium flow batteries are used in combination with solar panels and wind power generators. The new model will help detect and monitor failures and expand the scope of application of the battery.
The new mathematical model effectively describes the cross-over ‒ a major problem in the vanadium flow battery’s operation, leading to capacity reduction.
The approach proposed by Professor Aldo Bischi and his team helps attain high accuracy in modeling the battery’s charge and discharge characteristics (voltage, capacity, and charge level) and the capacity reduction due to cross-over using reasonable computational effort.
“Our model can be used to develop condition monitoring techniques for vanadium flow batteries as a way to prevent degradation of their performances due to long operation,” explains the study’s first author Mikhail Pugach, who is a PhD student at both Skoltech and MIPT.
About Skoltech
The Skolkovo Institute of Science and Technology (Skoltech) is a private graduate research university. Established in 2011 in collaboration with the Massachusetts Institute of Technology (MIT), Skoltech cultivates a new generation of researchers and entrepreneurs, promotes advanced scientific knowledge and fosters innovative technology to address critical issues facing Russia and the world in the third millennium. Skoltech applies the best Russian and international research and educational practices, with particular emphasis on entrepreneurship and innovation, click here.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Insulectro & Dupont Host Technology Symposium at Silicon Valley Technology Center June 25
06/22/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, and DuPont, a major manufacturer of flex laminates and chemistry, invite fabricators, OEMS, designers, and engineers to attend an Innovation Symposium – Unlock the Power - this Wednesday, June 25, at DuPont’s Silicon Valley Technology Center in Sunnyvale, CA.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.