Brighter Microscopy Using Built-In Nanobulbs
July 16, 2018 | A*STAREstimated reading time: 2 minutes

By using ultrafast laser pulses to join silicon and gold atoms into a new type of nanoparticle, researchers from A*STAR and ITMO University, Russia, have created a white-light source for applications including high-resolution characterization of biomolecules.
The wave nature of light imposes constraints on the resolution of conventional optical microscopes, no matter how intense the source. The process of diffraction spreads out light waves at the nanoscale and produces blurry images when objects are smaller than half the source beam’s wavelength.
Now, researchers have devised a way to beat the diffraction limit. Arseniy Kuznetsov and Yefeng Yu from the A*STAR Data Storage Institute have teamed up with colleagues at Russia’s ITMO University to improve near-field scanning optical microscopy (NSOM) devices. These microscopes embed optically active materials inside a sharp microscale tip. When positioned extremely close to a sample, the light-emitting tip generates evanescent waves capable of resolving items separated by just a few nanometers.
One drawback of NSOM is that implanted light sources, such as quantum dot crystals and photoactive molecules, tend to emit in narrow regions of the electromagnetic spectrum. This makes it difficult to use these materials for emerging ‘nanospectroscopy’ applications that detect a sample’s structural and optical features in ultra-fine detail; broad-spectrum white light that excites many components of a specimen simultaneously would be preferable.
Kuznetsov, Yu, and their colleagues realized that silicon nanoparticles, which exhibit wide-ranging luminescence after laser excitation, might solve this white light problem if they could be made more efficient at scales suitable for NSOM tips. To realize this goal, the team deposited a thin layer of silicon on top of a gold-coated substrate, and then exposed the material to bursts of ultra-fast lasers. Spherical silicon nanoparticles containing integrated gold regions were recovered from the ablation process.
“Normally, these two materials are unmixable — melting them together won’t produce a good alloy,” explains Kuznetsov. “But when the process happens with femtosecond laser pulses, we get a hybrid that solidifies in an unusual state.”
The researchers’ experiments revealed that the gold regions of the new material produced high-energy, ‘hot’ electrons that transferred to silicon crystals and helped them emit ultraviolet, visible, and infrared light. Attaching the hybrid particle to the end of a microscopic tip enabled them to scan nanoscale photonic devices and map out their optical response at high speeds.
“This mixture has unique photoluminescence properties that take advantage of both components,” says Kuznetsov. “We are working on ways to control their dimensions and nanocompositions.”
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Integrating Uniplate PLBCu6 With the Digital Factory Suite
09/12/2025 | Giovanni Obino and Andreas Schatz, MKS' AtotechPrinted circuit board manufacturing is rapidly changing, driven by miniaturization, stringent reliability requirements, and growing pressure for sustainable production. Meeting these challenges requires more than incremental improvements; it demands a combination of precise equipment and real-time process intelligence. The pairing of Uniplate® PLBCu6 with the Digital Factory Suite (DFS) demonstrates how hardware and software can work together to create more responsive, resource-efficient manufacturing.
Smart Automation: Odd-form Assembly—Dedicated Insertion Equipment Matters
09/09/2025 | Josh Casper -- Column: Smart AutomationLarge, irregular, or mechanically unique parts, often referred to as odd-form components, have never truly disappeared from electronics manufacturing. While many in the industry have been pursuing miniaturization, faster placement speeds, and higher-density PCBs, certain market sectors are moving in the opposite direction.
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Standard of Excellence: The Human Touch in an Automated World
08/27/2025 | Anaya Vardya -- Column: Standard of ExcellenceWe live in a world where everything from groceries to tech support is a click away. Automation has revolutionized the way we conduct business. From order tracking systems to AI-powered chatbots, automation can increase speed, improve accuracy, and reduce costs. However, with all that progress comes a critical challenge: How do we ensure that we don’t lose the human touch, the very thing that makes business relationships meaningful?
Marcy’s Musings: Continuing to Invent the Future With SEL
08/19/2025 | Marcy LaRont -- Column: Marcy's MusingsTwo years ago, PCB007 Magazine devoted an issue to Schweitzer Engineering Labs (SEL), a new captive greenfield PCB facility in Moscow, Idaho. We highlighted some of the most cutting-edge achievements in facility layout, design, and equipment in the PCB fabrication industry. SEL was a shining example of what was possible, providing insight and inspiration to PCB fabricators looking toward growth and expansion.