-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInner Layer Precision & Yields
In this issue, we examine the critical nature of building precisions into your inner layers and assessing their pass/fail status as early as possible. Whether it’s using automation to cut down on handling issues, identifying defects earlier, or replacing an old line...
Engineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
An Insect-Inspired Drone Deforms Upon Impact
July 26, 2018 | EPFLEstimated reading time: 2 minutes
An origami-like drone developed at EPFL is flexible enough to absorb shocks without breaking before returning to its initial shape. This new type of drone, which was inspired by insect wings, draws on the advantages of both stiff and flexible structures.
In recent years, robotics experts have taken a page from the traditional Japanese practice of origami and come up with light and flexible – and highly innovative – robots and drones. Two types of origami-inspired structures have emerged: rigid structures that have a certain weight-bearing capacity but that break if that capacity is exceeded, and flexible yet resilient structures that cannot carry much of a load at all.
EPFL researchers, applying what they observed about insect wings, have developed a hybrid origami drone that can be stiff or flexible depending on the circumstances. When airborne, the structure is stiff enough to carry its own weight and withstand the thrust of the propellers. But if the drone runs into something, it becomes flexible in order to absorb the shock and therefore minimize any damage. This research, which is being carried out in Dario Floreano’s Laboratory of Intelligent Systems, has been published in Science Robotics.
Sandwich Structure
The drone’s resilience comes from a unique combination of stiff and elastic layers. An elastomer membrane is stretched and then sandwiched between rigid plates. When the system is at rest, the plates hold together and give the structure its stiffness. But when enough force is applied, the plates draw apart and the structure can bend.
“When we make a drone, we can give it specific mechanical properties,” says Stefano Mintchev, the study’s lead author. “This includes, for example, defining the moment at which the structure switches from stiff to flexible.” And because the drone builds up elastic potential energy when it is folded up, it can unfold automatically when so instructed.
Structures that are stiff and flexible at the same time have a range of other potential applications as well. As they were developing their drone, the researchers used the same technology to create a soft-touch gripper. The gripper softens once it reaches a certain level of pressure so as not to break the object that it is picking up. This also means it cannot pick up a load that exceeds its capacity.
“The current trend in robotics is to create ‘softer’ robots that can adapt to a given function and operate safely alongside humans. But some applications also require a certain level of rigidity,” says Floreano. “With our system, we have shown that you can strike the right balance between the two.”
Suggested Items
Flex PCB Design Best Practices with Dave Lackey
12/04/2024 | Brittany Martin, I-Connect007David Lackey, a flex circuit expert at American Standard Circuits, speaks about the advantages and challenges of designing with flexible and rigid-flex PCBs. He also discusses how consulting before the design phase can save time and costs by avoiding manufacturing issues and highlights the reliability and packaging benefits of flex technology, especially for compact designs in sectors like aerospace.
Flexible Electronics Market to Reach $75.04 Billion by 2032
12/03/2024 | Globe NewswireThe SNS Insider report indicates that,“The Flexible Electronics Market Size was valued at USD 32.65 Billion in 2023 and is expected to reach USD 75.04 Billion by 2032 and grow at a CAGR of 9.72% over the forecast period 2024-2032.”
NTT, Olympus Joint Demonstration Shows IOWN APN's Low-latency Capability
11/21/2024 | JCN NewswireNTT Corporation and Olympus Corporation announced that, following the start of their joint experiment in March of the world’s first cloud endoscope system which processes endoscopic videos on the cloud, they jointly established a cloud endoscopy system utilizing the IOWN APN technology.
All Flex Solutions Adds Talent to Flexible Circuit Facilities
11/14/2024 | All Flex SolutionsAll Flex Solutions is excited to welcome John Letourneau as our Director of Facilities and Maintenance at our Flexible Circuit Centers of Excellence!
Flexible Circuit Technologies Announces Major Expansion of Capabilities & Resources
11/13/2024 | CNWFlexible Circuit Technologies (FCT), a global design and value add manufacturer of flexible circuits, heaters, and membrane switches based in Minneapolis, MN, announces the opening of FCT-Huizhou.