Batteries Poised for Organic Revolution
August 16, 2018 | A*STAREstimated reading time: 2 minutes

Incorporating organic materials into lithium ion batteries could lower their cost and make them more environmentally friendly, A*STAR researchers have found.
Image Caption: Hydrogen bonds (blue) strongly attach the redox active organic molecule HATNTA (red) to a graphene oxide support (grey). Reprinted from Ref. 1 with permission of The Royal Society of Chemistry
The team has developed an organic-based battery cathode that has significantly improved electrochemical performance compared to previous organic cathode materials. Crucially, the new material is also robust, remaining stable over thousands of battery charge/discharge cycles.
The cathode, the positive electrode in Li-ion batteries, is a critical component. An electron-deficient, rigid organic molecule called hexaazatrinaphthalene (HATN) was previously investigated as an organic cathode material for lithium ion batteries. However, its promising initial performance declined rapidly during use, because the molecule began to dissolve into the battery’s liquid electrolyte.
A new cathode material, in which HATN was combined with graphene oxide in a bid to prevent the organic material from dissolving, has now been developed by Yugen Zhang and his colleagues from the A*STAR Institute of Bioengineering and Nanotechnology.
In graphene oxide, a single-atom thick sheet of carbon atoms is partly covered by a layer of oxygen atoms. “Graphene oxide has excellent electronic conductivity, and surface oxygen functionality that may form hydrogen-bonding interactions with HATN,” Zhang says. He explains that this made graphene oxide a promising candidate for forming a HATN-graphene oxide nanocomposite.
The nanocomposite’s performance exceeded expectations. The materials combined to form core-shell nanorods in which the HATN was coated with graphene oxide. “Graphene oxide and HATN formed a very nice composite structure, which solved the dissolution issue of HATN in electrolyte and gave the cathode very good cycling stability,” Zhang says. A lithium ion battery using this material as its cathode retained 80 per cent of its capacity after 2000 charge/discharge cycles.
The team saw even better performance when they combined graphene oxide with a HATN derivate called hexaazatrinaphthalene tricarboxylic acid (HATNTA). A battery made from this material retained 86 per cent of its capacity after 2,000 charge/discharge cycles. The improved performance is probably due to the polar carboxylic acid groups on the HATNTA molecule, which attached the molecule even more strongly to the graphene oxide.
The team is continuing to develop new materials to improve the performance of organic cathodes, Zhang says. Aside from investigating alternatives to graphene oxide, the team also is working on HATN-based porous polymers for use as organic cathode materials, which should enhance the flow of ions during battery charge and discharge.
The A*STAR-affiliated researchers contributing to this research are from the Institute of Bioengineering and Nanotechnology.
Suggested Items
AI Chips for the Data Center and Cloud Market Will Exceed US$400 Billion by 2030
05/09/2025 | IDTechExBy 2030, the new report "AI Chips for Data Centers and Cloud 2025-2035: Technologies, Market, Forecasts" from market intelligence firm IDTechEx forecasts that the deployment of AI data centers, commercialization of AI, and the increasing performance requirements from large AI models will perpetuate the already soaring market size of AI chips to over US$400 billion.
TTM Technologies Announces Retirement of Founder and Board Member, Kent Alder
05/09/2025 | Globe NewswireTTM Technologies, Inc., a leading global manufacturer of technology solutions including mission systems, radio frequency (RF) components and RF microwave/microelectronic assemblies, quick-turn and technologically advanced printed circuit boards (PCB), announced the retirement of its founder, former CEO and long-serving board member, Kent Alder.
NXP Unveils Third-Generation Imaging Radar Processors for Level 2+ to 4 Autonomous Driving
05/09/2025 | NXP SemiconductorNXP Semiconductors N.V. unveiled its new S32R47 imaging radar processors in 16 nm FinFET technology, building on NXP’s proven expertise in the imaging radar space.
Ericsson, Nokia, ANDREW, and Huawei Take Top Spots in ABI Research’s DAS/DRS Vendors Competitive Ranking
05/07/2025 | ABI ResearchDriven by the growing demand for seamless connectivity and 5G readiness, the Distributed Antenna System (DAS) and Distributed Radio System (DRS) market is shifting toward more intelligent, scalable solutions tailored to diverse enterprise environments.
Cadence Expands Design IP Portfolio Optimized for Intel 18A and Intel 18A-P Technologies, Advancing AI, HPC and Mobility Applications
05/01/2025 | Cadence Design SystemsCadence announced a significant expansion of its portfolio of design IP optimized for Intel 18A and Intel 18A-P technologies and certification of Cadence® digital and analog/custom design solutions for the latest Intel 18A process design kit (PDK).