Panasonic Develops Technology to Visualize Movement of the Lithium Ions in the Next-Generation Batteries
September 20, 2018 | Panasonic CorporationEstimated reading time: 3 minutes

Panasonic Corporation succeeded in regionally fixed quantitative visualization of the two-dimensional distribution of the lithium ions in the LiCoO2 cathode for the first time in the world by charging and discharging the all-solid-state lithium ion battery in the scanning transmission electron microscope (STEM) and by using the electron energy-loss spectroscopy (EELS) and the advanced image analysis techniques (multivariate analysis techniques) in collaboration with Japan Fine Ceramics Center and Nagoya University.
Image Caption: Changes in the Li-ion concentration distribution in the LiCoO2 cathode during the charging and discharging processes
Description of the Image
(a) through (d):
STEM images showing the cross-sectional images around the solid electrolyte / LiCoO2 cathode / Au current collector when the battery is charged by 0% (before charging), charged by 50%, changed by 100% and discharged by 33% respectively.
(e) through (h):
(e) through (h) show the Li distribution in the fixed region mapped by using the EELS and the advanced image analysis. They show that the ion concentration is low around the interface near the solid electrolyte. They also show that the Li-ions are desorbed from the LiCoO2 cathode and concentration is reduced as the charge amount increases and, in the discharging process when the Li-ions returns, the ion concentration increases from the area near the Au current collector.
Background
Research and development of the all-solid-state Li-ion batteries that can be expected to realize high safety and high energy density are being conducted around the world as one of the "innovative batteries" that can solve the issues of the conventional batteries using the liquid electrolyte for the purpose of their future installation on the electric automobiles and the hybrid cars. However, the Li-ions' very high transport resistance at the interface between the electrode and the solid electrolyte is preventing commercialization of all-solid-state Li-ion batteries.
Through this observation, it became clear that ununiformly distributed Li in the LiCoO2 cathode had effects also on movement of the Li-ions during the charging and discharging processes. It was also found that the Li-ion concentration was low and lots of Co3O4 coexisted around the interface near the solid electrolyte.
It is hoped that this will make clear the cause of the Li-ions' high transport resistance at the interface and lead to a big step toward commercialization of the next-generation batteries.
What is necessary to solve the issue and design and develop the high-performance all-solid-state batteries is visualizing the movement of the Li-ions in the batteries and feeding back into the battery designing. However, because of the batteries' reactions generated locoregionally in the nanometer (one-billionth of a meter) scale and low detection sensitivity of Li, a light element, the nanoscale movement of the Li-ions during the charging and discharging processes could not have been visualized.
Studying Method and Achievement
Applying the Japan Fine Ceramics Center's operando monitoring techniques to Panasonic's battery technologies enabled measuring the two-dimensional energy loss spectrum by using the electron energy-loss spectroscopy (EELS) while charging and discharging the batteries. As the spectrum contains signals caused by Li, Panasonic used the advanced image analysis techniques (multivariate analysis techniques) and succeeded in capturing clearly the weak Li signals in nanometer scale.
By using this new Li imaging technique, the Li distribution inside the LiCoO2 cathode and the valence distribution of the transition element Co were monitored two-dimensionally while charging and discharging the all-solid-state Li-ion battery consisting of the LiCoO2 cathode, the LASGTP solid electrolyte and the in-situ formed negative electrode. The technique enabled capturing clearly the Li-ions' extraction and insertion according to the battery's charging and discharging and it became clear as a result of the advanced image analysis that co-existence of lots of Co3O4 near the interface between the LiCoO2 cathode and the LASGTP solid electrolyte was preventing smooth movement of the Li-ions.
Future Development
Designing the batteries with reduced Li-ion interface resistance will be possible by feeding back this monitoring results into the all-solid-state battery designing process. As a result, the ultrahigh-performance all-solid-state batteries where the Li-ions can move smoothly can be realized. In addition, as the STEM-EELS measurement and advanced image analysis techniques having been developed this time can also be applied to the other secondary batteries (such as the all-solid-state lithium ion batteries using the sulfide solid electrolyte, the sodium ion, the magnesium-ion, etc.), a huge contribution to commercialization of various types of the all-solid-state batteries can be expected.
Suggested Items
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.
New High Power 3D AXI for Power Electronics from Test Research, Inc.
04/17/2025 | TRITest Research, Inc. (TRI), a leading provider of Test and Inspection solutions for the electronics manufacturing industry, proudly announces the launch of the 3D AXI TR7600HP system. Designed for power semiconductor inspection, the TR7600HP enhances accuracy and efficiency in detecting defects in components such as IGBTs, MOSFETs, SiC inverters, and Paladin Connectors.
Real Time with... IPC APEX EXPO 2025: MivaTek is Revolutionizing Circuit Board Manufacturing with DART Technology
04/02/2025 | Real Time with...IPC APEX EXPOBrendan Hogan from MivaTek Global discusses the company's focus on direct imaging for circuit boards and semiconductors. MivaTek is introducing DART technology for dynamic feature size adjustments. This technology enhances precision, improving registration and throughput.
Real Time with... IPC APEX EXPO 2025: Schmoll America—Committed to Supporting Customers
03/31/2025 | Real Time with...IPC APEX EXPOKurt Palmer of Schmoll America and Stephan Kunz of Schmoll Maschinen GmbH had a great show, reporting solid attendance and good opportunities, as Schmoll America celebrates its first anniversary. With a booth full of equipment for attendees to see and touch, they showcased unique products like the Pico laser and X-ray machine, and discussed plans for a new facility.