Super Cheap Earth Element to Advance New Battery Tech to the Industry
September 20, 2018 | Purdue UniversityEstimated reading time: 2 minutes

Most of today's batteries are made up of rare lithium mined from the mountains of South America. If the world depletes this source, then battery production could stagnate.
Sodium is a very cheap and earth-abundant alternative to using lithium-ion batteries that is also known to turn purple and combust if exposed to water—even just water in the air.
Worldwide efforts to make sodium-ion batteries just as functional as lithium-ion batteries have long since controlled sodium’s tendency to explode, but not yet resolved how to prevent sodium-ions from “getting lost” during the first few times a battery charges and discharges. Now, Purdue University researchers made a sodium powder version that fixes this problem and holds a charge properly.
“Adding fabricated sodium powder during electrode processing requires only slight modifications to the battery production process,” said Vilas Pol, Purdue associate professor of chemical engineering. “This is one potential way to progress sodium-ion battery technology to the industry.”
The work aligns with Purdue's giant leaps celebration, acknowledging the university’s global advancements made in health, space, artificial intelligence and sustainability as part of Purdue’s 150th anniversary. Those are the four themes of the yearlong celebration’s Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.
Even though sodium-ion batteries would be physically heavier than lithium-ion technology, researchers have been investigating sodium-ion batteries because they could store energy for large solar and wind power facilities at lower cost.
The problem is that sodium ions stick to the hard carbon end of a battery, called an anode, during the initial charging cycles and not travel over to the cathode end. The ions build up into a structure called a “solid electrolyte interface.”
“Normally the solid electrolyte interface is good because it protects carbon particles from a battery’s acidic electrolyte, where electricity is conducted,” Pol said. “But too much of the interface consumes the sodium ions that we need for charging the battery.”
Purdue researchers proposed using sodium as a powder, which provides the required amount of sodium for the solid electrolyte interface to protect carbon, but doesn’t build up in a way that it consumes sodium ions.
They minimized sodium’s exposure to the moisture that would make it combust by making the sodium powder in a glovebox filled with the gas argon. To make the powder, they used an ultrasound—the same tool used for monitoring the development a fetus—to melt sodium chunks into a milky purple liquid. The liquid then cooled into a powder, and was suspended in a hexane solution to evenly disperse the powder particles.
Just a few drops of the sodium suspension onto the anode or cathode electrodes during their fabrication allows a sodium-ion battery cell to charge and discharge with more stability and at higher capacity—the minimum requirements for a functional battery.
Suggested Items
Spirit AeroSystems Reports First Quarter 2025 Results
05/02/2025 | Spirit AeroSystems, Inc.Spirit's revenue in the first quarter of 2025 decreased from the same period of 2024, primarily due to lower production activity on most Boeing programs, particularly the Boeing 737 program.
NASA Tests Ultralight Antennas to Benefit Future National Airspace
04/28/2025 | NASANASA engineers are using one of the world’s lightest solid materials to construct an antenna that could be embedded into the skin of an aircraft, creating a more aerodynamic and reliable communication solution for drones and other future air transportation options.
Mycronic Posts Interim Report January-March 2025
04/25/2025 | MycronicMycronic announced its interim report for the period of January to March 2025, revealing a strong performance in the first quarter. The company reported significant increases in order intake and net sales, alongside a healthy EBIT margin.
BEST Inc. Presents StencilQuik for Simplifying BGA Rework Challenges
04/02/2025 | BEST Inc.BEST Inc., a leader in electronic component rework services, training, and rework tools is thrilled to announce StencilQuik™ rework stencils. This innovative product is specifically designed for placing Ball Grid Arrays (BGAs) or Chip Scale Packages (CSPs) during the rework process.
Best Technical Papers at IPC APEX EXPO 2025 Selected
03/03/2025 | IPCThe best technical conference papers of IPC APEX EXPO 2025 have been selected. Voted on through a ballot process by members of the IPC APEX EXPO Technical Conference Program Committee (TPC), the international group of paper authors will be recognized during show opening remarks on Tuesday, March 18.