UTA Researcher Earns Grant to Study Fundamental Physics of Photonic Band Dynamics
October 8, 2018 | University of Texas at ArlingtonEstimated reading time: 2 minutes

A University of Texas at Arlington researcher is investigating the fundamental physics of how light is contained within photonic lattices.
Robert Magnusson, the Texas Instruments Distinguished University Chair in Nanoelectronics and an electrical engineering professor, will use a $360,000 National Science Foundation grant for his research into band flips and bound states in leaky-mode resonant photonic lattices.
Photonic lattices are structures of materials – such as nanopatterned silicon films on a glass substrate or arrays of nanowires – with differing refractive qualities that are arranged so they can capture, store, and release light. Like ordinary crystals, photonic lattices have an energy band structure with gaps of different widths. A bound state in the lattice means that light cannot escape the lattice, while a leaky mode allows the light to come through.
When light shines on a lattice, it resonates with the leaky modes and reflects or transmits in a narrow band. The location of the resonance in the wavelength spectrum has intrinsic properties, and fundamentally there is a resonant leaky mode on one edge of the band, but no radiation on the other. Recently, scientists have realized that the non-leaky edge is related to the bound state, which is one key point that Magnusson is investigating under the project.
“We have identified how this band structure comes about and we understand, in part, how the gap between the leaky and non-leaky states works. We can adjust the separation of the two edges and close the gap so the modes superimpose, but we can also make the modes pass by each other and flip their energy positions,” Magnusson said.
“The flip is explained by modeling and understanding the fundamental physics of this class of devices whereby existing science is also understood. We’re studying the band dynamics of leaky photonic lattices and performing experiments to verify all of these theories.”
Any discoveries Magnusson makes in the course of his research could potentially be used to create new low-power modulators for optical communications systems such as in the current internet or applied later in other devices as technology advances.
Magnusson’s grant is an example of data-driven discovery, one of the themes of UTA’s Strategic Plan 2020: Bold Solutions | Global Impact, said Jonathan Bredow, chair of the Department of Electrical Engineering.
“Dr. Magnusson is a leading global authority in leaky-mode resonance technology with a long-term track record in the field. This new grant will allow him to expand his knowledge of the fundamental science involved,” Bredow said. “His findings have the potential to influence research and discovery in the field for years to come.”
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
VIDEOTON EAS's Bulgarian Subsidiary Expands Into Automotive Products
09/15/2025 | VideotonVEAS Bulgaria, engaged in electronics manufacturing, has joined the ranks of VIDEOTON companies authorized to produce automotive products.
Dymax Mexico to Showcase Light-Curing Technologies at SMTA Guadalajara Expo & Tech Forum 2025
09/05/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, will participate in SMTA Guadalajara Expo & Tech Forum, taking place September 17-18, 2025, at the Guadalajara Expo Center in Guadalajara, Jalisco, Mexico.
September 2025 SMT007 Magazine: An Eye on India
09/02/2025 | I-Connect007 Editorial TeamIndia is on track to become the world’s fastest-growing major economy within the next two years, and that momentum is already reshaping its electronics manufacturing sector. Whether you work with Indian suppliers or serve Indian customers, chances are the country will become a bigger part of your supply chain in the near future.
AiM Future, Franklin Wireless Sign MOU to Jointly Develop Lightweight AI Model and High-Efficiency 1 TOPS AI SoC Chipset
09/01/2025 | BUSINESS WIREAiM Future, a leading AI semiconductor design company, has signed a Memorandum of Understanding (MOU) with Franklin Wireless Corp., a global leader in intelligent wireless solutions, to jointly develop a lightweight AI model and a high-efficiency 1 TOPS performance AI SoC chipset.
Dymax Renews Connecticut Headquarters Lease, Reinforces Long-Term Commitment to Local Community
08/08/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, is pleased to announce the renewal and extension of its corporate lease at its 318 Industrial Lane, Torrington, headquarters.