IHEP Develops First CMOS Pixel Sensor Prototype for Circular Electron Positron Collider
October 10, 2018 | Chinese Academy of SciencesEstimated reading time: 1 minute

Scientists from the Institute of High Energy Physics (IHEP) have developed the first pixel sensor prototype based on the 180 nm Complementary Metal–Oxide–Semiconductor (CMOS) imaging sensor process recently. This represents significant progress in the key technology of the micro-vertex detector, the core component for the detector at the Circular Electron Positron Collider (CEPC).
CMOS pixel sensors allow integration of the sensing element and its readout electronics on the same silicon substrate, which make them attractive for charged particle tracking. The CEPC micro-vertex detector, located closest to the e+e- interaction point, will use state-of-the-art pixel technologies that provide high spatial resolution, are capable of high readout speed and adequate radiation hardness, and feature low power consumption.
The first prototype sensors, named JadePix 1, have been characterized with radioactive resources, and recently by the electron test beam at DESY in Hamburg, Germany. Preliminary results show that spatial resolutions better than 5 μm and 3.5 μm can be achieved for pixel sizes of 33×33 μm2 and 16×16 μm2, respectively. More importantly, there is no significant resolution degradation after exposure to neutron irradiation up to 1013 1 MeV neq/cm2.
The proposed Circular Electron Positron Collider (CEPC) aims at measuring Higgs properties with high precision and probing new physics beyond the Standard Model of particle physics. The CEPC Study Group has completed the conceptual design report (CDR) for the e+e- collider, and is completing the CDR for the detector. The group is pursuing an R&D program involving technologies critical for realizing the CEPC.
IHEP's Experimental Physics Division (EPD) initiated the R&D project to develop the novel CMOS pixel sensors. The advanced silicon tracking detectors and associated electronics have been the focal research direction at EPD. The division has been actively participating in several international projects, including the ATLAS Inner Tracker Upgrade, to gain design and construction experience for silicon detectors.
In addition, the division has developed pixel detectors for X-ray imaging. These detectors will soon be deployed at various stations of the High Energy Photon Source (HEPS), which will be constructed near Beijing. Meanwhile, EPD is pushing forward pixel detector R&D for the CEPC using both CMOS and SOI technologies. The goal is to design a fully functional pixel sensor and construct a larger scale prototype detector in near future.
Suggested Items
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
Elementary Mr. Watson: Retro Routers vs. Modern Boards—The Silent Struggle on Your Screen
06/26/2025 | John Watson -- Column: Elementary, Mr. WatsonThere's a story about a young woman preparing a holiday ham. Before putting it in the pan, she cuts off the ends. When asked why, she shrugs and says, "That's how my mom always did it." She asks her mother, who gives the same answer. Eventually, the question reaches Grandma, who laughs and says, "Oh, I only cut the ends off because my pan was too small." This story is a powerful analogy for how many PCB designers approach routing today.
Connect the Dots: The Future of PCB Design and Manufacturing
07/02/2025 | Matt Stevenson -- Column: Connect the DotsFor some time, I have been discussing the increasing complexity of PCBs and how designers can address the constantly evolving design requirements associated with them. My book, "The Printed Circuit Designer’s Guide to… Designing for Reality," details best practices for creating manufacturable boards in a modern production environment.
Siemens Turbocharges Semiconductor and PCB Design Portfolio with Generative and Agentic AI
06/24/2025 | SiemensAt the 2025 Design Automation Conference, Siemens Digital Industries Software today unveiled its AI-enhanced toolset for the EDA design flow.
Cadence AI Autorouter May Transform the Landscape
06/19/2025 | Andy Shaughnessy, Design007 MagazinePatrick Davis, product management director with Cadence Design Systems, discusses advancements in autorouting technology, including AI. He emphasizes a holistic approach that enhances placement and power distribution before routing. He points out that younger engineers seem more likely to embrace autorouting, while the veteran designers are still wary of giving up too much control. Will AI help autorouters finally gain industry-wide acceptance?