Quantum Computers Tackle Big Data With Machine Learning
October 16, 2018 | Purdue UniversityEstimated reading time: 3 minutes

Every two seconds, sensors measuring the United States’ electrical grid collect 3 petabytes of data—the equivalent of 3 million gigabytes. Data analysis on that scale is a challenge when crucial information is stored in an inaccessible database.
Image Caption: A Purdue research team led by Sabre Kais, professor of chemical physics, is combining quantum algorithms with classical computing to speed up database accessibility.
But researchers at Purdue University are working on a solution, combining quantum algorithms with classical computing on small-scale quantum computers to speed up database accessibility. They are using data from the U.S. Department of Energy National Labs’ sensors, called phasor measurement units, that collect information on the electrical power grid about voltages, currents and power generation. Because these values can vary, keeping the power grid stable involves continuously monitoring the sensors.
Sabre Kais, a professor of chemical physics and principal investigator, will lead the effort to develop new quantum algorithms for computing the extensive data generated by the electrical grid.
“Non-quantum algorithms that are used to analyze the data can predict the state of the grid, but as more and more phasor measurement units are deployed in the electrical network, we need faster algorithms,” said Alex Pothen, professor of computer science and co-investigator on the project. “Quantum algorithms for data analysis have the potential to speed up the computations substantially in a theoretical sense, but great challenges remain in achieving quantum computers that can process such large amounts of data.”
The research team’s method has potential for a number of practical applications, such as helping industries optimize their supply-chain and logistics management. It could also lead to new chemical and material discovery using an artificial neural network known as a quantum Boltzmann machine. This kind of neural network is used for machine learning and data analysis.
"We have already developed a hybrid quantum algorithm employing a quantum Boltzmann machine to obtain accurate electronic structure calculations," Kais said. "We have proof of concept showing results for small molecular systems, which will allow us to screen molecules and accelerate the discovery of new materials."
Machine learning algorithms have been used to calculate the approximate electronic properties of millions of small molecules, but navigating these molecular systems is challenging for chemical physicists. Kais and co-investigator Yong Chen, director of the Purdue Quantum Center and professor of physics and astronomy and of electrical and computer engineering, are confident that their quantum machine learning algorithm could address this.
Their algorithms could also be used for optimizing solar farms. The lifetime of a solar farm varies depending on the climate as solar cells degrade each year from weather, according to Muhammad Alam, professor of electrical and computer engineering and a co-investigator of the project. Using quantum algorithms would make it easier to determine the lifetime of solar farms and other sustainable energy technologies for a given geographical location and could help make solar technologies more efficient.
Additionally, the team hopes to launch an externally-funded industry-university collaborative research center (IUCRC) to promote further research in quantum machine learning for data analytics and optimization. Benefits of an IUCRC include leveraging academic-corporate partnerships, expanding material science research, and acting on market incentive. Further research in quantum machine learning for data analysis is necessary before it can be of use to industries for practical application, Chen said, and an IUCRC would make tangible progress.
“We are close to developing the classical algorithms for this data analysis, and we expect them to be widely used,” Pothen said. “Quantum algorithms are high-risk, high-reward research, and it is difficult to predict in what time frame these algorithms will find practical use.”
The team’s research project was one of eight selected by the Purdue’s Integrative Data Science Initiative to be funded for a two-year period. The initiative will encourage interdisciplinary collaboration and build on Purdue’s strengths to position the university as a leader in data science research and focus on one of four areas: health care; defense; ethics, society and policy; fundamentals, methods, and algorithms. The research thrusts of the Integrative Data Science Initiative is hosted by Purdue’s Discovery Park.
"This is an exciting time to combine machine learning with quantum computing," Kais said. "Impressive progress has been made recently in building quantum computers, and quantum machine learning techniques will become powerful tools for finding new patterns in big data."
About Discovery Park
Discovery Park is an open laboratory for interdisciplinary collaboration focused on global challenges. Its mission is to accelerate world-changing interdisciplinary research, enrich transformative education and advance the translation of innovation to commercialization activities of faculty, students and staff.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/05/2025 | Andy Shaughnessy, I-Connect007It’s almost fall here in Atlanta, and that means that the temperature is finally dropping. And it quit raining! It’s been raining since March, and I’m so over it, as the social influencers say. Last night we grilled out on the deck, and it wasn’t hot, and we didn’t get rained on. Life is good. It was a busy week in the industry. In this installment of my must-reads, we say goodbye to Walt Custer, the man who made PCB data points interesting for the rest of us.
Walt Custer: Making Data Interesting
09/03/2025 | Andy Shaughnessy, I-Connect007I just learned that IPC Hall of Famer Walt Custer has passed away at 81. I first met Walt about 20 years ago when I started covering the fabrication industry. Right away, he started telling me which companies to watch and which trends to follow. This was in the years following 9/11, and things were still pretty fluid.