Ultra-Light Gloves Let Users 'Touch' Virtual Objects
October 16, 2018 | EPFLEstimated reading time: 3 minutes
Scientists from EPFL and ETH Zurich have developed an ultra-light glove—weighing less than 8 grams per finger—that enables users to feel and manipulate virtual objects. Their system provides extremely realistic haptic feedback and could run on a battery, allowing for unparalleled freedom of movement.
Engineers and software developers around the world are seeking to create technology that lets users touch, grasp and manipulate virtual objects, while feeling like they are actually touching something in the real world.
Scientists at EPFL and ETH Zurich have just made a major step toward this goal with their new haptic glove, which is not only lightweight—under 8 grams per finger—but also provides feedback that is extremely realistic. The glove is able to generate up to 40 Newtons of holding force on each finger with just 200 Volts and only a few milliWatts of power. It also has the potential to run on a very small battery. That, together with the glove’s low form factor (only 2 mm thick), translates into an unprecedented level of precision and freedom of movement.
“We wanted to develop a lightweight device that—unlike existing virtual-reality gloves—doesn’t require a bulky exoskeleton, pumps or very thick cables,” says Herbert Shea, head of EPFL’s Soft Transducers Laboratory (LMTS).
The scientists’ glove, called DextrES, has been successfully tested on volunteers in Zurich and has been presented at the upcoming ACM Symposium on User Interface Software and Technology (UIST).
Fabric, Metal Strips and Electricity
DextrES is made of nylon with thin elastic metal strips running over the fingers. The strips are separated by a thin insulator. When the user’s fingers come into contact with a virtual object, the controller applies a voltage difference between the metal strips causing them to stick together via electrostatic attraction—this produces a braking force that blocks the finger’s or thumb’s movement. Once the voltage is removed, the metal strips glide smoothly and the user can once again move his fingers freely.
Tricking Your Brain
For now the glove is powered by a very thin electrical cable, but thanks to the low voltage and power required, a very small battery could eventually be used instead. “The system’s low power requirement is due to the fact that it doesn’t create a movement, but blocks one”, explains Shea. The researchers also need to conduct tests to see just how closely they have to simulate real conditions to give users a realistic experience. “The human sensory system is highly developed and highly complex. We have many different kinds of receptors at a very high density in the joints of our fingers and embedded in the skin. As a result, rendering realistic feedback when interacting with virtual objects is a very demanding problem and is currently unsolved. Our work goes one step in this direction, focusing particularly on kinesthetic feedback,” says Otmar Hilliges, head of the Advanced Interactive Technologies Lab at ETH Zurich.
In this joint research project, the hardware was developed by EPFL at its Microcity campus in Neuchâtel, and the virtual reality system was created by ETH Zurich, which also carried out the user tests.
“Our partnership with the EPFL lab is a very good match. It allows us to tackle some of the longstanding challenges in virtual reality at a pace and depth that would otherwise not be possible,” adds Hilliges.
The next step will be to scale up the device and apply it to other parts of the body using conductive fabric. “Gamers are currently the biggest market, but there are many other potential applications – especially in healthcare, such as for training surgeons. The technology could also be applied in augmented reality,” says Shea.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Myrias Optics, Pixelligent Announce Strategic Manufacturing Partnership
10/16/2025 | PRNewswireMyrias Optics, a pioneering manufacturer of flat optics , and Pixelligent Technologies LLC, the leading manufacturer of high refractive index (RI) nanocomposites for next-gen electronics, announced that they have entered into a strategic manufacturing partnership.
MacDermid Alpha & Graphic PLC Lead UK’s First Horizontal Electroless Copper Installation
09/30/2025 | MacDermid Alpha & Graphic PLCMacDermid Alpha Electronics Solutions, a leading supplier of integrated materials and chemistries to the electronics industry, is proud to support Graphic PLC, a Somacis company, with the installation of the first horizontal electroless copper metallization process in the UK.
Safran, Rheinmetall Sign Framework Agreement for Advanced Defense Solutions
09/29/2025 | SafranSafran Electronics & Defense and Rheinmetall Electronics have signed a new framework agreement at DSEI London, strengthening their long-term collaboration in the defense sector.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Curtiss-Wright Selected by Rheinmetall to Provide Turret Drive Stabilization System for the KF51 Panther Main Battle Tank
08/11/2025 | BUSINESS WIRECurtiss-Wright announced it has been selected by Rheinmetall Landsysteme Germany (RLS) to provide its modular turret drive stabilization system (TDSS) technology in support of the KF51 Panther Main Battle Tank (MBT).