New Model Helps Define Optimal Temperature and Pressure to Forge Nanoscale Diamonds in an Explosion
October 16, 2018 | AIP.orgEstimated reading time: 2 minutes
Nanodiamonds, bits of crystalline carbon hundreds of thousands of times smaller than a grain of sand, have intriguing surface and chemical properties with potential applications in medicine, optoelectronics and quantum computing. To forge these nanoscopic gemstones, researchers expose organic explosive molecules to powerful detonations in a controlled environment. These explosive forces, however, make it difficult to study the nanodiamond formation process, even under laboratory conditions.
To overcome this hurdle, a pair of French researchers recently developed a procedure and a computer model that can simulate the highly variable conditions of explosions on phenomenally short time scales. The team reports their work in The Journal of Chemical Physics, from AIP Publishing.
“Understanding the processes that form nanodiamonds is essential to control or even tune their properties, making them much better suited for specific purposes,” said Xavier Bidault, a researcher at CEA DAM Ile-de-France, and a co-author on the paper.
Bidault and his co-author Nicolas Pineau used a type of simulation known as Reactive Molecular Dynamics, which simulates the time evolution of complex, chemically reactive systems down to the atomic level.
“The atomic-level interaction model is essential to really understand what’s happening,” said Pineau. “It gives us an intimate way to analyze, step-by-step, how carbon-rich compounds can form nanodiamonds in a high-pressure, high-temperature system.”
Due to the extreme and fleetingly brief conditions of a detonation, actual experimental investigation is impractical, so researchers must rely on atomic-level simulations that show how and where this chemistry occurs.
The new results reveal that a delicate balance of temperature and pressure evolution is necessary for nanodiamonds to form at all. If the initial detonation pressure is too low, carbon solids are able to form, but not diamonds. If the pressure is too high, the carbon “seeds” of nanodiamonds become polluted by other elements, such as oxygen or nitrogen, which prevent the transition to diamond.
Scientists have known for more than 50 years that nanodiamonds form from detonations, but the atomic-level details of their formation have been an open question for at least the last two decades. The most common industrial route for their synthesis is the detonation of carbon-rich organic high explosives. Nanodiamonds can also form naturally from explosive volcanic eruptions or asteroid impacts on Earth.
“Our work shows that the right path seems to be a high initial pressure followed by a sharp pressure decrease,” said Bidault. If the precise conditions are met, nanodiamonds form. These complex pressure paths are typical of detonation processes.
This study is the theoretical part of a more global project funded by the French National Research Agency (ANR), involving the French Alternative Energies and Atomic Energy Commission (CEA) and the French-German Research Institute of Saint-Louis (ISL).
Suggested Items
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.
Altair, JetZero Join Forces to Propel Aerospace Innovation
03/26/2025 | AltairAltair, a global leader in computational intelligence, and JetZero, a company dedicated to developing the world’s first commercial blended wing airplane, have joined forces to drive next-generation aerospace innovation.
RTX's Raytheon Receives Follow-on Contract from U.S. Army for Advanced Defense Analysis Solution
03/25/2025 | RTXRaytheon, an RTX business, has been awarded a follow-on contract from the U.S. Army Futures Command, Futures and Concepts Center to continue to utilize its Rapid Campaign Analysis and Demonstration Environment, or RCADE, modeling and simulation capability.
Ansys to Integrate NVIDIA Omniverse
03/20/2025 | ANSYSAnsys announced it will offer advanced data processing and visualization capabilities, powered by integrations with NVIDIA Omniverse within select products, starting with Fluent and AVxcelerate Sensors.
Altair Releases Altair HyperWorks 2025
02/19/2025 | AltairAltair, a global leader in computational intelligence, is thrilled to announce the release of Altair® HyperWorks® 2025, a best-in-class design and simulation platform for solving the world's most complex engineering challenges.