Exploring New Spintronics Device Functionalities in Graphene Heterostructures
October 17, 2018 | Graphene FlagshipEstimated reading time: 2 minutes

Graphene Flagship researchers have shown in a paper published in Science Advances how heterostructures built from graphene and topological insulators have strong, proximity induced spin-orbit coupling which can form the basis of novel information processing technologies.
Spin-orbit coupling is at the heart of spintronics. Graphene’s spin-orbit coupling and high electron mobility make it appealing for long spin coherence length at room temperature. Graphene Flagship researchers from Chalmers University of Technology (Sweden), Catalan Institute of Nanoscience and Nanotechnology−ICN2 (Spain), Universitat Autònoma de Barcelona (Spain) and ICREA Institució Catalana de Recerca i Estudis Avançats (Spain) showed a strong tunability and suppression of the spin signal and spin lifetime in heterostructures formed by graphene and topological insulators. This can lead to new graphene spintronic applications, ranging from novel circuits to new non-volatile memories and information processing technologies.
“The advantage of using heterostructures built from two Dirac materials is that, graphene in proximity with topological insulators still supports spin transport, and concurrently acquires a strong spin–orbit coupling,” said Associate Professor Saroj Prasad Dash, from Chalmers University of Technology.
“We do not just want to transport spin we want to manipulate it,” said Professor Stephan Roche from ICN2 and deputy leader of the Graphene Flagship’s spintronics Work-Package, “the use of topological insulators is a new dimension for spintronics, they have a surface state similar to graphene and can combine to create new hybrid states and new spin features. By combining graphene in this way we can use the tuneable density of states to switch on/off—to conduct or not conduct spin. This opens an active spin device playground.”
The Graphene Flagship, from its very beginning, saw the potential of spintronics devices made from graphene and related materials. This paper shows how combining graphene with other materials to make heterostructures opens new possibilities and potential applications.
“This paper combines experiment and theory and this collaboration is one of the strengths of the Spintronics Work-Package within the Graphene Flagship,” said Roche.
“Topological insulators belong to a class of material that generate strong spin currents, of direct relevance for spintronic applications such as spin-orbit torque memories. As reported by this article, the further combination of topological insulators with two-dimensional materials like graphene is ideal for enabling the propagation of spin information with extremely low power over long distances, as well as for exploiting complementary functionalities, key to further design and fabricate spin-logic architectures,” said Kevin Garello from IMEC, Belgium who is leader of the Graphene Flagships Spintronics Work-Package.
“This paper brings us closer to building useful spintronic devices. The innovation and technology roadmap of the Graphene Flagship recognises the potential of graphene and related materials in this area. This work yet again places the Flagship at the forefront of this field, initiated with pioneering contributions of European researchers,” added Professor Andrea C. Ferrari, science and technology officer of the Graphene Flagship, and chair of its management panel.
By: Sian Fogden
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.