Exploring New Spintronics Device Functionalities in Graphene Heterostructures
October 17, 2018 | Graphene FlagshipEstimated reading time: 2 minutes

Graphene Flagship researchers have shown in a paper published in Science Advances how heterostructures built from graphene and topological insulators have strong, proximity induced spin-orbit coupling which can form the basis of novel information processing technologies.
Spin-orbit coupling is at the heart of spintronics. Graphene’s spin-orbit coupling and high electron mobility make it appealing for long spin coherence length at room temperature. Graphene Flagship researchers from Chalmers University of Technology (Sweden), Catalan Institute of Nanoscience and Nanotechnology−ICN2 (Spain), Universitat Autònoma de Barcelona (Spain) and ICREA Institució Catalana de Recerca i Estudis Avançats (Spain) showed a strong tunability and suppression of the spin signal and spin lifetime in heterostructures formed by graphene and topological insulators. This can lead to new graphene spintronic applications, ranging from novel circuits to new non-volatile memories and information processing technologies.
“The advantage of using heterostructures built from two Dirac materials is that, graphene in proximity with topological insulators still supports spin transport, and concurrently acquires a strong spin–orbit coupling,” said Associate Professor Saroj Prasad Dash, from Chalmers University of Technology.
“We do not just want to transport spin we want to manipulate it,” said Professor Stephan Roche from ICN2 and deputy leader of the Graphene Flagship’s spintronics Work-Package, “the use of topological insulators is a new dimension for spintronics, they have a surface state similar to graphene and can combine to create new hybrid states and new spin features. By combining graphene in this way we can use the tuneable density of states to switch on/off—to conduct or not conduct spin. This opens an active spin device playground.”
The Graphene Flagship, from its very beginning, saw the potential of spintronics devices made from graphene and related materials. This paper shows how combining graphene with other materials to make heterostructures opens new possibilities and potential applications.
“This paper combines experiment and theory and this collaboration is one of the strengths of the Spintronics Work-Package within the Graphene Flagship,” said Roche.
“Topological insulators belong to a class of material that generate strong spin currents, of direct relevance for spintronic applications such as spin-orbit torque memories. As reported by this article, the further combination of topological insulators with two-dimensional materials like graphene is ideal for enabling the propagation of spin information with extremely low power over long distances, as well as for exploiting complementary functionalities, key to further design and fabricate spin-logic architectures,” said Kevin Garello from IMEC, Belgium who is leader of the Graphene Flagships Spintronics Work-Package.
“This paper brings us closer to building useful spintronic devices. The innovation and technology roadmap of the Graphene Flagship recognises the potential of graphene and related materials in this area. This work yet again places the Flagship at the forefront of this field, initiated with pioneering contributions of European researchers,” added Professor Andrea C. Ferrari, science and technology officer of the Graphene Flagship, and chair of its management panel.
By: Sian Fogden
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).
Is Glass Finally Coming of Age?
10/13/2025 | Nolan Johnson, I-Connect007Substrates, by definition, form the base of all electronic devices. Whether discussing silicon wafers for semiconductors, glass-and-epoxy materials in printed circuits, or the base of choice for interposers, all these materials function as substrates. While other substrates have come and gone, silicon and FR-4 have remained the de facto standards for the industry.
Creative Materials to Showcase Innovative Functional Inks for Medical Devices at COMPAMED 2025
10/09/2025 | Creative Materials, Inc.Creative Materials, a leading manufacturer of high-performance functional inks and coatings, is pleased to announce its participation in COMPAMED 2025, taking place November 17–20 in Düsseldorf, Germany.
Jiva Leading the Charge Toward Sustainable Innovation
09/30/2025 | Marcy LaRont, PCB007 MagazineEnvironmental sustainability in business—product circularity—is a high priority these days. “Circularity,” the term meant to replace “recycling,” in its simplest definition, describes a full circle life for electronic products and all their elements. The result is re-use or a near-complete reintroduction of the base materials back into the supply chain, leaving very little left for waste. For what cannot be reused productively, the ultimate hope is to have better, less harmful means of disposal and/or materials that can seamlessly and harmlessly decompose and integrate back into the natural environment. That is where Jiva and Soluboard come in.