New Reservoir Computer Marks First-Ever Microelectromechanical Neural Network Application
October 18, 2018 | AIP.orgEstimated reading time: 2 minutes

As artificial intelligence has become increasingly sophisticated, it has inspired renewed efforts to develop computers whose physical architecture mimics the human brain. One approach, called reservoir computing, allows hardware devices to achieve the higher-dimension calculations required by emerging artificial intelligence. One new device highlights the potential of extremely small mechanical systems to achieve these calculations.
Image Caption: A single silicon beam (red), along with its drive (yellow) and readout (green and blue) electrodes, implements a MEMS capable of nontrivial computations. CREDIT: Guillaume Dion
A group of researchers at the Université de Sherbrooke in Québec, Canada, reports the construction of the first reservoir computing device built with a microelectromechanical system (MEMS). Published in the Journal of Applied Physics, from AIP Publishing, the neural network exploits the nonlinear dynamics of a microscale silicon beam to perform its calculations. The group’s work looks to create devices that can act simultaneously as a sensor and a computer using a fraction of the energy a normal computer would use.
The article appears in a special topic section of the journal devoted to "New Physics and Materials for Neuromorphic Computation," which highlights new developments in physical and materials science research that hold promise for developing the very large-scale, integrated "neuromorphic" systems of tomorrow that will carry computation beyond the limitations of current semiconductors today.
“These kinds of calculations are normally only done in software, and computers can be inefficient,” said Guillaume Dion, an author on the paper. “Many of the sensors today are built with MEMS, so devices like ours would be ideal technology to blur the boundary between sensors and computers.”
The device relies on the nonlinear dynamics of how the silicon beam, at widths 20 times thinner than a human hair, oscillates in space. The results from this oscillation are used to construct a virtual neural network that projects the input signal into the higher dimensional space required for neural network computing.
In demonstrations, the system was able to switch between different common benchmark tasks for neural networks with relative ease, Dion said, including classifying spoken sounds and processing binary patterns with accuracies of 78.2% and 99.9% respectively.
“This tiny beam of silicon can do very different tasks,” said Julien Sylvestre, another author on the paper. “It’s surprisingly easy to adjust it to make it perform well at recognizing words.”
Sylvestre said he and his colleagues are looking to explore increasingly complicated computations using the silicon beam device, with the hopes of developing small and energy-efficient sensors and robot controllers.
Suggested Items
Panasonic Avionics Completes Multi-Orbit Network Optimization Following Seamless Leo / Geo Switching in Flight
04/28/2025 | Panasonic AvionicsPanasonic Avionics Corporation (Panasonic Avionics), a leading provider of in-flight entertainment and connectivity (IFEC) solutions, has announced the successful optimization of its multi-orbit satellite network following switching between LEO and GEO networks in its flight test program.
Europe Network Functions Virtualization: The Future of Telecom Infrastructure
04/16/2025 | Persistence Market ResearchNetwork Functions Virtualization (NFV) is rapidly transforming the telecommunications industry worldwide, and Europe is at the forefront of this digital transformation.
American Made Advocacy: Reshoring—About Trust, Not Just Geography
03/25/2025 | Shane Whiteside -- Column: American Made AdvocacyIn today’s chaotic political environment, you might have missed the fact that Congress allocated nearly $3 billion to rip out and replace key components in America’s telecommunications networks. The funding is to remove equipment from networks nationwide because of cyberattacks on internet routers and cellular networks enabled by a Chinese company that makes more than half of the routers sold in the U.S. We know from prior experience and similar transgressions that we cannot trust that Chinese components aren’t being used for nefarious purposes.
CommScope, Altice Labs Combine PON Technologies to Power Next-Gen FTTH Networks
03/21/2025 | BUSINESS WIRECommScope, a global leader in network connectivity, announced the availability of its PON Evo™ products, a comprehensive suite of passive optical network (PON) active optical line terminal (OLT) solutions.
Lockheed Martin, Nokia, and Verizon Advance Defense Capabilities Through 5G.MIL® Collaboration
03/04/2025 | Lockheed MartinLockheed Martin, Nokia, and Verizon announced the successful integration of Nokia's industry-leading, military-grade 5G solutions into Lockheed Martin's 5G.MIL® Hybrid Base Station (HBS).