Anomalous Hall Effect Tested in Defect-Free Thin-Film Magnetic Semiconductor
October 22, 2018 | RIKENEstimated reading time: 2 minutes
Understanding the quantum behavior of electrons is of profound interest to researchers because it could both pave the way for the low-energy, super-fast computers of tomorrow and explain fundamental physical phenomena. Now, RIKEN researchers have used a high-quality material to better come to grips with the quantum transport of electrons in magnetic semiconductors (Science Advances, "Anomalous Hall effect derived from multiple Weyl nodes in high-mobility EuTiO3 films").
Besides their electrical charge, electrons have another inherent property that is just as important—their spin. While all electrons have the same charge, their spin can take one of two values. This is often visualized as either an intrinsic clockwise or counter-clockwise rotation, or an up or a down arrow.
This property could be useful for information processing in an emerging computing technology known as spintronics. But spintronics is still in its infancy, and scientists are seeking to develop a better understanding of spin-related transport of electrons in materials.
Kei Takahashi and his colleagues from the RIKEN Center for Emergent Matter Science, together with colleagues from the University of Tokyo, are studying one such phenomenon known as the anomalous Hall effect.
In the conventional Hall effect, an electron moving through a conductor follows a curved trajectory when a magnetic field is applied at right angles to its motion. In ferromagnetic materials, the electron spins are aligned, and this effect becomes even more pronounced.
To investigate when and how this additional anomalous Hall effect happens, Takahashi and the team explored the effect on thin films of the magnetic semiconductor europium titanate (EuTiO3) at low temperatures. The beauty of using this material as a test bed for the anomalous Hall effect is that the electronic properties of EuTiO3 can be altered just by adding small amounts of lanthanum. “EuTiO3 is a special spin-polarized semiconductor because the density of charge carriers can be tuned while keeping the magnetization constant,” explains Takahashi.
Crucial to their success was the ability to create high-quality films of EuTiO3 using a technique called metal-organic molecular beam epitaxy. Material quality is important because defects in crystalline structure can scatter the electrons, which masks the additional anomalous Hall effect.
The scientists investigated EuTiO3 at charge densities that meant the material was in or near to the so-called Weyl state. Curiously, they discovered that the anomalous Hall effect does not increase linearly with the magnetization as previously thought.
“We hope to develop this idea further by controlling the anomalous Hall effect electrically using an electric gate and enhancing the effect by confining the electrons to two dimensions,” says Takahashi.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
The Right Approach: Get Ready for ISO 9001 Version 6
09/10/2025 | Steve Williams -- Column: The Right ApproachWe are well past the normal five to seven years that a new revision of the ISO 9001 international quality standard gets released. It may be finished toward the end of 2025, with implementation starting in 2026, and there will be as many significant changes as we saw in the current 2015 version.
Machvision Leads Shift to Automated Inline Final Inspection, AOI in North America
09/10/2025 | Ralph Jacobo, all4-PCBSchweitzer Engineering Laboratories (SEL) chose Machvision inspection equipment due to its capabilities and versatility. Machvision of Taiwan offers circuit inspection, hole inspection and measurement, IC Substrate and HDI inspection, and final visual inspection solutions. The best fit for SEL was the 4.0Pro Circuit Inspection for inner and outer layers, and the AFI6 for final visual inspection of finished panels.
Federal Electronics Elevates Hermosillo Facility with Advanced Mycronic 3D AOI System
08/12/2025 | Federal ElectronicsFederal Electronics, a leader in providing advanced electronic manufacturing services, has enhanced its new production line at its Hermosillo, Mexico facility with the addition of the Mycronic MYPro i50 Automated Optical Inspection (AOI) system.
Jeh Aerospace Raises $11M to Boost Aircraft Supply Chain
08/12/2025 | I-Connect007 Editorial TeamJeh Aerospace, the high-precision aerospace and defense manufacturing startup founded by Vishal Sanghavi and Venkatesh Mudragalla, has raised $11 million in a Series A round led by Elevation Capital, with support from General Catalyst, to scale its commercial aircraft supply chain manufacturing in India, according to OEM.