Optoelectronic Interface for Stimulating Neural Networks in the Brain
October 23, 2018 | Lobachevsky UniversityEstimated reading time: 2 minutes
Lobachevsky University scientists, together with colleagues from the Technical University of Madrid (Spain), have first proposed and developed an optoelectronic interface for the interaction of electronic neuron-like generators with live brain neurons
In the past few decades, research aimed at finding approaches to restoring brain function has increased exponentially. An interdisciplinary approach to the task of brain function restoration combines complementary approaches and methods of regenerative medicine, on the one hand, and those proposed by neuroengineering, on the other. Biological approaches are based on activating the regenerative capacity of the brain and on cell transplantation, whereas engineering strategies include methods of neuromodulation, creating replacement or bridge neuroprostheses or developing brain-machine interfaces. The engineering approach is to create a biohybrid architecture that somehow connects the artificial control device with the brain: it hinders neuronal activity or, on the contrary, initiates this activity.
According to Svetlana Gerasimova, junior researcher at the Physics and Technology Research Institute and at the Neurotechnology Department of Lobachevsky University (Nizhny Novgorod, Russia), Russian scientists together with their colleagues from the Technical University of Madrid (Spain) have first proposed and developed an optoelectronic interface for the interaction of electronic neuron-like generators and living neurons of the brain (Fig.1).
Figure 1: Schematic of an optoelectronic device
“The designed interface differs from the existing methods of acting on brain neurons: it uses a fiber-optic channel to transmit signals from an artificial electronic neuron to a live one (Fig. 2). At the same time, unlike in the known optogenetics methods, there is no need to perform technically difficult and expensive genetic modifications of neurons for stimulation. Stimulation of living neurons is carried out with the help of an electrical signal obtained using photoelectric conversion at the output of the optical fiber,” Svetlana Gerasimova says.
Figure 2: Schematic illustration of an optoelectronic device during the stimulation of synaptic transmission in the mouse hippocampus section
Mikhail Mishchenko, researcher at the Department of Oscillation Theory and Automatic Control of the UNN Faculty of Radiophysics, notes that the main advantage of using optical fiber instead of traditional metal wires is galvanic isolation, which rules out the possibility of electrical damage to brain tissue due to breakdown or electromagnetic effects.
“Besides, optical fiber provides another important advantage: the effectiveness of the interface in terms of affecting brain neurons can be increased by using an active optical fiber instead of a passive one. Thus, adaptive stimulation will be possible and its effectiveness will depend on the current state of the fiber optic channel, which reproduces the effects of synaptic plasticity,” concludes Mikhail Mishchenko.
The effectiveness of the proposed system in stimulating the electrophysiological activity of neurons in a surviving section of the hippocampus has been demonstrated. It can be used to develop adaptive systems for restoring brain activity or replacing individual parts of the brain affected by an injury or a neurodegenerative disease.
Suggested Items
SEL Receives Purdue Senior Design Partner of the Year Award
05/01/2025 | Schweitzer Engineering LaboratoriesSchweitzer Engineering Laboratories (SEL) has been awarded the Senior Design Partner of the Year Award from the Edwardson School of Industrial Engineering at Purdue University.
IQM to Deploy Poland’s First Superconducting Quantum Computer
04/25/2025 | BUSINESS WIREThe first quantum computer in Poland developed by IQM Quantum Computers, a global leader in superconducting quantum computers, will be operational at the Wrocław University of Science and Technology (WUST) in the second quarter of this year.
Hon Hai Research Institute's Fourth-generation Semiconductor Application Reaches a New Milestone
04/21/2025 | FoxconnHon Hai Research Institute ( HHRI ) Semiconductor Research Institute has conducted cross-border cooperation with Yang Ming Chiao Tung University and the University of Texas at Austin to invest in forward-looking research on fourth-generation semiconductors.
University of Arizona Pioneering Technical Education Beyond Semiconductors
04/18/2025 | Marcy LaRont, PCB007 MagazineWhile many universities struggle to keep their curriculum up to date with the evolving needs of the electronics industry, the University of Arizona stands head and shoulders above the others. Its Center for Semiconductor Manufacturing incorporates five of the colleges at UA and emphasizes an interdisciplinary approach to prepare students for diverse careers in technology and manufacturing.
Tata Electronics Appoints KC Ang as President and Head of Tata Semiconductor Manufacturing
04/03/2025 | PRNewswireTata Electronics Private Limited, a pioneer in the Indian electronics and semiconductor manufacturing sector, announced the appointment of KC Ang as President and Head of its Foundry business - Tata Semiconductor Manufacturing Private Limited reporting to Dr. Randhir Thakur, CEO & MD of Tata Electronics.