Nanotubes May Give the World Better Batteries
October 26, 2018 | Rice UniversityEstimated reading time: 2 minutes

Rice University scientists are counting on films of carbon nanotubes to make high-powered, fast-charging lithium metal batteries a logical replacement for common lithium-ion batteries.
The Rice lab of chemist James Tour showed thin nanotube films effectively stop dendrites that grow naturally from unprotected lithium metal anodes in batteries. Over time, these tentacle-like dendrites can pierce the battery’s electrolyte core and reach the cathode, causing the battery to fail.
That problem has both dampened the use of lithium metal in commercial applications and encouraged researchers worldwide to solve it.
“One of the ways to slow dendrites in lithium-ion batteries is to limit how fast they charge,” Tour said. “People don’t like that. They want to be able to charge their batteries quickly.”
The Rice team’s answer, detailed in Advanced Materials, is simple, inexpensive and highly effective at stopping dendrite growth, Tour said.
“What we’ve done turns out to be really easy,” he said. “You just coat a lithium metal foil with a multiwalled carbon nanotube film. The lithium dopes the nanotube film, which turns from black to red, and the film in turn diffuses the lithium ions.”
“Physical contact with lithium metal reduces the nanotube film, but balances it by adding lithium ions,” said Rice postdoctoral researcher Rodrigo Salvatierra, co-lead author of the paper with graduate student Gladys López-Silva. “The ions distribute themselves throughout the nanotube film.”
An illustration shows how lithium metal anodes developed at Rice University are protected from dendrite growth by a film of carbon nanotubes. Courtesy of the Tour Group
When the battery is in use, the film discharges stored ions and the underlying lithium anode refills it, maintaining the film’s ability to stop dendrite growth.
The tangled-nanotube film effectively quenched dendrites over 580 charge/discharge cycles of a test battery with a sulfurized-carbon cathode the lab developed in previous experiments. The researchers reported the full lithium metal cells retained 99.8 percent of their coulombic efficiency, the measure of how well electrons move within an electrochemical system.
Co-authors of the paper are Rice alumni Almaz Jalilov of the King Fahd University of Petroleum and Minerals, Saudi Arabia; Jongwon Yoon, a senior researcher at the Korea Basic Science Institute; and Gang Wu, an instructor, and Ah-Lim Tsai, a professor of hematology, both at the McGovern Medical School at the University of Texas Health Science Center at Houston. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.
The research was supported by the Air Force Office of Scientific Research, the National Institutes of Health, the National Council of Science and Technology, Mexico; the National Council for Scientific and Technological Development, Ministry of Science, Technology and Innovation and Coordination for the Improvement of Higher Education Personnel, Brazil; and Celgard, LLC.
Rice University chemist James Tour, left, graduate student Gladys López-Silva and postdoctoral researcher Rodrigo Salvatierra use a film of carbon nanotubes to prevent dendrite growth in lithium metal batteries, which charge faster and hold more power than current lithium-ion batteries. Photo by Jeff Fitlow
Suggested Items
Incap Launches ‘Incap Legends’ esports Tournament and Invites Students from Around the World to Participate
03/31/2025 | IncapIncap Corporation is proud to announce the launch of ‘Incap Legends’, a new esports tournament in partnership with Newcastle and Stafford Colleges Group (NSCG).
Zuken USA Announces Tech Tour 2025 to Highlight the Latest Innovations in Wire Harness and Control Panel Design
02/18/2025 | ZukenZuken USA is pleased to announce the launch of Tech Tour 2025, a free, one-day event series designed to bring innovation and expertise directly to customers and industry professionals across the United States.
PCB Workshop and Plant Tour Hosted by the SMTA Wisconsin Chapter
09/09/2024 | SMTAThis half-day course will provide participants with a comprehensive understanding of the multi-layer PCB fabrication process. The workshop will explore how PCB design influences fabrication steps and how the finished product integrates into the assembly process.
Koh Young to Host SMTA Atlanta Chapter Technical Meeting on State-of-the-Art Test Techniques Presented by Vaughan Carlson from VALUE Engrafting
07/23/2024 | Koh YoungKoh Young, the industry leader in True3D™ measurement-based inspection solutions and proud SMTA corporate sponsor, is excited to announce that it will host the next Atlanta Chapter technical meeting at its Americas Headquarters in Duluth, Georgia.
Kimball Electronics Romania Ignites Spark for Technology in Local Students
05/27/2024 | Kimball ElectronicsKimball Electronics Romania recently played a role in sparking curiosity and igniting a passion for technology during "Diversified Week," an initiative focused on enriching student experiences.