Catching up with... HSIO Technologies President James Rathburn
November 5, 2018 | Dan BeaulieuEstimated reading time: 3 minutes

I love innovative companies and keeping up with what they are doing. One of the most creative and innovative companies in our industry is HSIO Technologies, founded by entrepreneur and inventor James Rathburn. Based in Maple Grove, Minnesota, this company stays at the cutting edge of the electronics industry’s technology. Leveraging extensive interconnect device knowledge with proven semiconductor fabrication, printed circuit fabrication, and microelectronic assembly processes enables them to quickly develop cost-effective, high-performance interconnect solutions across a wide variety of form factors. I checked in with Jim recently to see what he and his team are up to and learned how they are using liquid crystal polymers and other materials to focus on increasing high-speed and high-density PCBs for uses in all markets.
Dan Beaulieu: Jim, for the readers who might not be familiar with HSIO, tell us a little bit about it.
James Rathburn: I founded the company in 2010 and launched it with an investment from partners from a previous company called Gryphics Inc., which we sold in 2007. The previous company produced high-performance test sockets for the semiconductor industry. The customer base was reaching a point where the signal integrity of the system PCB and package substrate were defeating the performance of the high-speed sockets. The plan was to create an integrated technology that would include high-speed printed circuits with low-loss connectors, to mate them. We started HSIO by going to our customer base and asking, “If you could have new technology developed, what would that be?” The common theme was that they needed finer lines and spaces. They also said that vias were killing their signals. So, from that came our charter at HSIO which was to come up with a new way to look at fabricating printed circuits with finer lines and spaces and signal integrity as the focus.
Beaulieu: What are some of the ways you are meeting those challenges, with respect to technology at HSIO?
Rathburn: We are in the process of commercializing a printed circuit technology we have developed utilizing liquid crystal polymer technology. The technology is not limited to LCP, and we can utilize conventional materials, but LCP is the focus for high-speed and highdensity. We developed the technology in our Minnesota and Arizona operations and have established a manufacturing relationship with Benchmark Electronics to scale production and support engineering and application development. Benchmark is launching full production with the RF High-Speed Design Center of Innovation, circuit fab, micro-electronics assembly, SMT assembly and test—all within the same process flow, all focused on next generation highspeed and RF technology needs. We are very proud to be part of this effort, which has never been done this way in the EMS industry. We work directly with the Lark RF Technology subsidiary of Benchmark, and Daniel Everitt, Benchmark’s VP and GM of Lark, will be presenting at the upcoming EDICon conference in October.
Beaulieu: Why did you choose to go in this direction?
Rathburn: The original development plan was to create a circuit-plus-socket technology family with tuned performance for the semiconductor test customer. Historically, the chip producer tests the device to make sure it will function properly in the final system. Typically, the signal integrity requirements for test have been much more stringent than actual system use to make sure everything in the system works together. As system performance and complexity has evolved, in many cases it is no longer good enough to test outside of the actual usage model. This development has evolved further to the point where many end systems need to have the performance previously needed only at test. Our technology can provide the best performance in both test and commercial markets. In the end, the purpose of the technology is to provide a new way of designing and fabricating high-performance printed circuits with high-density.
To read the full version of this article which originally appeared in the September 2018 issue of PCB007 Magazine, click here.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Coming Soon: The Advanced Electronics Packaging Digest
08/27/2025 | Marcy LaRont, I-Connect007The upcoming Advanced Electronics Packaging Digest is a curated, condensed monthly publication designed to keep you informed and engaged with the fast-moving world of advanced electronics packaging (AEP). In our inaugural September issue, we will begin at the foundation with an in-depth interview featuring Matt Kelly, CTO of the Global Electronics Association. Kelly and his Technology Solutions Team approach advanced packaging from a holistic systems perspective.
Nordson Reports Q3 Fiscal 2025 Results and Updates Full Year Guidance
08/21/2025 | BUSINESS WIRENordson Corporation reported results for the fiscal third quarter ended July 31, 2025. Sales were $742 million compared to the prior year’s third quarter sales of $662 million.
Haylo Labs Acquires Plessey Semiconductors
08/20/2025 | Haylo LabsHaylo Labs has acquired Plessey Semiconductors, the UK’s leading innovator in microLED display technology.
SoftBank Group and Intel Corporation Sign $2B Investment Agreement
08/19/2025 | Intel CorporationSoftBank Group Corp. and Intel Corporation today announced their signing of a definitive securities purchase agreement, under which SoftBank will make a $2 billion investment in Intel common stock.
20 Years of Center Nanoelectronic Technologies (CNT) – Backbone of German Semiconductor Research Celebrates Anniversary
08/14/2025 | Fraunhofer IPMSThe Center Nanoelectronic Technologies (CNT) of the Fraunhofer Institute for Photonic Microsystems (IPMS) is celebrating its 20th anniversary this year. Since its founding in 2005, it has developed into a pillar of applied semiconductor research in Germany and Europe. With its unique research cleanroom and equipment adhering to the 300-mm wafer industry standard, CNT is unparalleled in Germany and serves as a central innovation driver for the microelectronics industry.