-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Alpha Assembly Solutions on Training, Education, and Low-Temperature Soldering
November 7, 2018 | I-Connect007 Editorial TeamEstimated reading time: 17 minutes
Fullerton: We want smaller chips to do more and dissipate more heat. Heat is one of the times when voiding can be a reliability concern. Many devices use a thermal plane on the bottom as their thermal interface material between the chip and the heat sink, which is the board. Voids in the material will undoubtedly reduce the thermal conductivity, but there is not a good understanding of what is the critical level. Is 10% or 20% good enough? How about 50%? No one knows the real number, so since we can measure it and we know that more must be bad, we strive towards less, but no one knows where that finish line is. We want to see increasingly less, even though continually driving down that number may not provide as many benefits as people think it does.
Matties: It becomes a diminishing return.
Fullerton: Correct.
Happy Holden: It's interesting because when you're telling us about companies hiring new engineers and expecting them to know all these practical elements, the same is true for printed circuit design and fabrication. Electrical engineers don't know how to design a PCB. They know all about Maxwell's equation and signal integrity but without any kind of hands-on experience. Do we need to rethink four-year degree programs and start focusing on offering four-year technology degrees where you don't have theoretical math and science classes, but more hands-on design and assembly so engineering graduates can start knowing a lot more about the real world in practical electronics? It costs your company money to train these people, and somebody has to pay for that. It probably comes out of your profits or your prices. A company that offers no training but offers lower prices versus a company that has all the training and gets the business is not a good financial model.
Fullerton: We follow a philosophy that our success is tied to our customers’ successes, so the things we can do to make our customers more successful will lead them to buy and use more solder materials in the long run. You’re right that there are certain situations where a low-cost competitor can undercut us, but that's not really where we play. We play in the value selling market and make sure that the total package that Alpha offers to our customers meets and exceeds their needs and expectations.
As far as the education levels and how to improve that at the university level, there are two things that I see as beneficial. One is something I took advantage of as an undergraduate—I went to a school that offered co-op. There are a number of co-op universities around the country, and I'm going to make a shameless plug for Kettering University in Michigan, which is where I earned my degree back when it was still called GMI Engineering & Management Institute. At Kettering University, completing a series of co-op experiences is a requirement. All students leave the school with a bachelor’s degree and two to three years of hands-on experience in the field that they work in as a requirement to graduate.
Drexel University in Pennsylvania is another good example where co-ops are an integral part of the requirements for their degree program. Other schools have optional programs that they offer their students that some take advantage of, so I sought out and chose a co-op school when I looked at my undergraduate education. I wanted to get both book learning and the hands-on part of the overall package.
Ford Electronics near Philadelphia where I grew up hired me when I was a student. I started as an 18-year-old that knew very little about engineering but learned as I went in that factory about how electronics were being manufactured, different processes, how a factory works, and who's responsible for what. When I graduated, I had practical real-world experience to accompany the piece of paper that said I had a degree in manufacturing engineering. This is a big piece of advice that I always encourage young people to look at when they are considering education opportunities—find ones that package hands-on learning along with classroom education.
The other side is schools like Rochester Institute Technology or Auburn University that have manufacturing labs and programs built around electronics and SMT-type manufacturing, but there are very few of those. There's a lot of investment and equipment and know-how that they need put into that. Manufacturing is not exactly a glamorous industry that is easy to recruit young people into as far as a degree program goes. There is a limitation on how many people are willing to put out that expenditure into building this kind of program and take a risk on a relatively limited field as far as they see.
Holden: I graduated with a lot of my friends because they worked for 14 months between their junior and senior year, so they graduated one year later, but they had over a year of hands-on experience.
Fullerton: There is no value you can put on hands-on experience, especially at that age when you're just learning and forming your understanding of the engineering field. Having hands-on experience where you’re around people that have been doing it for 10–30 years and seeing how they do things is priceless. Plus, you can make the mistakes that don't hurt anybody when you’re young, so you can learn from those mistakes and not repeat them later when it really matters—when you’re in charge of things.
Page 2 of 3
Suggested Items
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.
BEST Inc. Reports Record Demand for EZReball BGA Reballing Process
05/01/2025 | BEST Inc.BEST Inc., a leader in electronic component services, is pleased to announce they are experiencing record demand for their EZReball™ BGA reballing process which greatly simplifies the reballing of ball grid array (BGA) and chip scale package (CSP) devices.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.
KOKI Expands U.S. Sales Coverage with Multiple New Representatives
04/29/2025 | KOKIKOKI, a global leader in advanced soldering materials and process optimization services, is pleased to announce the expansion of its U.S. sales network with the addition of three new manufacturers’ representative firms: Assembled Product Specialists, Diversitech Reps Inc., and Eagle Electronics.