Ultra-Thin Transparent Silver Films for Solar Cells
November 12, 2018 | Ruhr-Universität BochumEstimated reading time: 2 minutes

A new fabrication process for transparent ultra-thin silver films has been developed by researchers at Ruhr-Universität Bochum and the University of Wuppertal. The material may help build highly efficient solar cells and light-emitting diodes. However, traditional chemical methods have not been able to produce ultra-thin and pure silver films. A team headed by Professor Anjana Devi and Nils Boysen from the Bochum-based research group Inorganic Materials Chemistry, in collaboration with the group of Professor Thomas Riedl from the Chair of Electronic Devices in Wuppertal, published an article on a new synthesis method in the journal “Angewandte Chemie”. The article was published online on 27 September 2018.
New Precursor Chemistry
“Precursors for the fabrication of ultra-thin silver films are highly sensitive to air and light,” explains Nils Boysen. The silver precursors can be stabilised with fluorine, phosphorus or oxygen. “However, these elements contaminate the thin films as well as the equipment used for the production,” continues the researcher. In the course of his Master thesis, Boysen and his colleagues developed an alternative solution to tackle the problems associated with common silver precursors.
The researchers created a chemical silver precursor, where the silver is surrounded by an amide and a carbene, which is even stable without elements like fluorine, phosphorous or oxygen. They demonstrated that a silver thin film can be applied to an electrode with the new precursor by atomic layer deposition. In the process, the gaseous precursor is transported to the electrode and a silver film is deposited there as a layer with a thickness of merely a few atoms. Because it is so thin, the silver film is transparent.
“As the process can be operated under atmospheric pressure and at low temperatures, the conditions for industrial production are quite favourable,” says Anjana Devi.
A Chance for Highly Efficient Solar Cells and Lights
Following a series of tests, the researchers showed that the thin silver films manufactured using this method are pure and electrically conductive. “As far as process technology is concerned, the successful synthesis of the new precursor paves the way for the development of ultra-thin silver films,” concludes Thomas Riedl. “It constitutes a first step towards the production of novel electrodes for highly efficient solar cells and lights.”
“The collaboration between the chemists from Bochum and the engineers from Wuppertal was the key to success,” stresses Anjana Devi.
Suggested Items
SMT007 Magazine July—What’s Your Competitive Sweet Spot?
07/01/2025 | I-Connect007 Editorial TeamAre you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche—what are their insights? In the July 2025 issue of SMT007 Magazine, we spotlight companies thriving by redefining or reinforcing their niche and offer insights to help you evaluate your own.
Smarter Machines Use AOI to Transform PCB Inspections
06/30/2025 | Marcy LaRont, PCB007 MagazineAs automated optical inspection (AOI) evolves from traditional end-of-process inspections to proactive, in-line solutions, the integration of AI and machine learning is revolutionizing defect reduction and enhancing yields, marking a pivotal shift in how quality is managed in manufacturing.
Magnalytix and Foresite to Host Technical Webinar on SIR Testing and Functional Reliability
06/26/2025 | MAGNALYTIXMagnalytix, in collaboration with Foresite Inc., is pleased to announce an upcoming one-hour Webinar Workshop titled “Comparing SIR IPC B-52 to Umpire 41 Functional & SIR Test Method.” This session will be held on July 24, 2025, and is open to professionals in electronics manufacturing, reliability engineering, and process development seeking insights into new testing standards for climatic reliability.
The Death of the Microsection
06/26/2025 | Bob Neves, Reliability Assessment Solutions, Inc.I got my start out of college grinding and polishing PCB microsections. My thumbs are a bit arthritic today because of the experience (microsection grinders know what I mean). Back then, via structures were rather large, and getting to the center in six steps of grinding and polishing was easy compared to what my team has been doing recently at the lab.
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.